В связи с ростом тарифов на первичные энергоресурсы рекуперация становиться как никогда актуальна. В приточно-вытяжных установках с рекуперацией обычно применяются следующие типы рекуператоров:
- пластинчатый или перекрестно-точный рекуператор;
- роторный рекуператор;
- рекуператоры с промежуточным теплоносителем;
- тепловой насос;
- рекуператор камерного типа;
- рекуператор с тепловыми трубами.
Принцип работы
Принцип работы любого рекуператор в приточно-вытяжных установках заключается в следующем. Он обеспечивает теплообмен (в некоторых моделях - и холодообмен, а также влагообмен) между потоками приточного и вытяжного воздуха. Процесс теплообмена может происходить непрерывно – через стенки теплообменника, с помощью хладона или промежуточного теплоносителя. Может теплообмен быть и периодическим, как в роторном и камерном рекуператоре. В результате выбрасываемый вытяжной воздух охлаждается, нагревая тем самым свежий приточный воздух. Процесс холодообмена в отдельных моделях рекуператоров проходит в теплое время года и позволяет снизить энергозатраты на системы кондиционирования воздуха за счет некоторого охлаждения подаваемого в помещение приточного воздуха. Влагообмен идет между потоками вытяжного и приточного воздуха, позволяя поддерживать в помещении комфортную для человека влажность круглогодично, без использования каких либо дополнительных устройств – увлажнителей и других.
Пластинчатый или перекрестно-точный рекуператор.
Теплопроводящие пластины рекуперативной поверхности изготавливают из тонкой металлической (материал – алюминий, медь, нержавеющая сталь) фольги или из ультратонкого картона, пластика, гигроскопичной целлюлозы. Потоки приточного и вытяжного воздуха движутся по множеству небольших каналов, образованных этими теплопроводящими пластинами, по схеме противотока. Контакт и смешивание потоков, их загрязнение практически исключены. В конструкции рекуператора движущихся деталей нет. Коэффициент эффективности 50-80%. В рекуператора из металлической фольги из-за разницы температур потоков воздуха на поверхности пластин может конденсироваться влага. В теплое время года ее необходимо отвести в систему канализации здания по специально оборудованному дренажному трубопроводу. В холодное время есть опасность замерзания этой влаги в рекуператоре и его механического повреждения (разморозки). Кроме того, образовавшийся лед сильно снижает эффективность работы рекуператора. Поэтому рекуператоры с металлическими теплопроводящими пластинами требуют при эксплуатации в холодное время года периодической оттайки потоком теплого вытяжного воздуха или использования дополнительного водяного или электрического воздухонагревателя. При этом приточный воздух или совсем не подается, или подается в помещение в обход рекуператора через дополнительный клапан (байпас). Время оттайки составляет в среднем от 5 до 25 минут. Рекуператор с теплопроводящими пластинами из ультратонкого картона и пластика не подвержен обмерзанию, так как через эти материалы идет и влагообмен, но у него другой недостаток – его нельзя использовать для вентиляции помещений с высокой влажностью с целью их осушения. Пластинчатый рекуператор может устанавливаться в приточно-вытяжную систему как в вертикальном, так и в горизонтальном положении в зависимости от требований к размерам венткамеры. Пластинчатые рекуператоры самые распространенные из-за своей относительной простоты конструкции и дешевизны.
Роторный рекуператор.
Этот тип – второй по степени распространения после пластинчатого. Теплота от одного потока воздуха к другому передается через вращающийся между вытяжной и приточной секциями цилиндрический пустотелый барабан, называемый ротором. Внутренний объем ротора заполнен уложенной туда плотно металлической фольгой или проволокой, которая играет роль вращающейся теплопередающей поверхности. Материал фольги или проволоки тот же, что и у пластинчатого рекуператора - медь, алюминий или нержавеющая сталь. Ротор имеет горизонтальную ось вращения приводного вала, вращаемого электродвигателем с шаговым или инверторным регулированием. С помощью двигателя можно управлять процессом рекуперации. Коэффициент эффективности 75-90%. Эффективность рекуператора зависит от температур потоков, их скорости и частоты вращения ротора. Изменяя частоту вращения ротора, можно менять и эффективность работы. Замерзание влаги в роторе исключено, а вот смешивание потоков, их взаимное загрязнение и передачу запахов полностью исключить нельзя, так как потоки непосредственно контактируют друг с другом. Возможно смешивание до 3%. Роторные рекуператоры не требуют больших затрат электроэнергии, позволяют осушать воздух в помещениях с высокой влажностью. Конструкция роторных рекуператоров является более сложной, чем пластинчатых, а их стоимость и затраты на эксплуатацию более высокими. Тем не менее, приточно-вытяжные установки с роторными рекуператорами являются очень популярными благодаря их высокой эффективности.
Рекуператоры с промежуточным теплоносителем.
Теплоноситель чаще всего вода или водные растворы гликолей. Такой рекуператор состоит из двух теплообменников, соединенных между собой трубопроводами с насосом для циркуляции и арматурой. Один из теплообменников помещен в канал с потоком вытяжного воздуха и получает теплоту от него. Теплота через теплоноситель с помощью насоса и труб переносится в другой теплообменник, расположенный в канале приточного воздуха. Приточный воздух воспринимает это тепло и нагревается. Смешивание потоков в этом случае полностью исключено, но из-за наличия промежуточного теплоносителя коэффициент эффективности этого типа рекуператоров относительно низок и составляет 45-55%. На эффективность можно влиять с помощью насоса, воздействуя на скорость движения теплоносителя. Основное преимущество и отличие рекуператора с промежуточным теплоносителем от рекуператора с тепловой трубой в том, что теплообменники в вытяжной и приточной установках можно располагать на расстоянии друг от друга. Положение для монтажа теплообменников, насоса и трубопроводов может быть как вертикальным, так и горизонтальным.
Тепловой насос.
Относительно недавно появилась интересная разновидность рекуператора с промежуточным теплоносителем – т.н. термодинамический рекуператор, в котором роль жидкостных теплообменников, труб и насоса играет холодильная машина, работающая в режиме теплового насоса. Это своеобразная комбинация рекуператора и теплового насоса. Она состоит из двух хладоновых теплообменников – испарителя-воздухоохладителя и конденсатора, трубопроводов, терморегулирующего вентиля, компрессора и 4-х ходового клапана. Теплообменники размещены в приточном и вытяжном воздуховоде, компрессор необходим для обеспечения циркуляции хладона, а клапан переключает потоки хладагента в зависимости от сезона и позволяет переносить теплоту из вытяжного воздуха в приточный и наоборот. При этом приточно-вытяжная система может состоять из нескольких приточных и одной вытяжной установки большей производительности, объединенных одним холодильным контуром. При этом возможности системы позволяют нескольким приточным установкам работать в разных режимах (нагрев/охлаждение) одновременно. Коэффициент преобразования теплового насоса СОР может достигать значений 4,5-6,5.
Рекуператор с тепловыми трубами.
По принципу работы рекуператор с тепловыми трубами похож на рекуператор с промежуточным теплоносителем. Разница лишь в том, что в потоки воздуха помещают не теплообменники, а так называемые тепловые трубы или точнее термосифоны. Конструктивно это герметично закрытые отрезки медной оребренной трубы, заполненные внутри специально подобранным легкокипящим хладоном. Один конец трубы в вытяжном потоке нагревается, хладон в этом месте кипит и передает воспринятое от воздуха тепло на другой конец трубы, обдуваемый потоком приточного воздуха. Здесь хладон внутри трубы конденсируется и передает тепло воздуху, который нагревается. Полностью исключены взаимное смешивание потоков, их загрязнение и передача запахов. Подвижных элементов нет, трубы в потоки помещают только вертикально либо под небольшим уклоном, чтобы хладон двигался внутри труб от холодного конца к горячему за счет силы тяжести. Коэффициент эффективности 50-70%. Важное условие для обеспечения работы его работы: воздуховоды, в которые установлены термосифоны, должны располагаться вертикально друг над другом.
Рекуператор камерного типа.
Внутренний объем (камера) такого рекуператора разделена заслонкой на две половины. Заслонка время от времени движется, меняя тем самым направление движения потоков вытяжного и приточного воздуха. Вытяжной воздух нагревает одну половину камеры, затем заслонка направляет сюда поток приточного воздуха и он нагревается от нагретых стенок камеры. Этот процесс периодически повторяется. Коэффициент эффективности достигает 70-80%. Но в конструкции есть подвижные детали, в связи с чем существует большая вероятность взаимного смешивания, загрязнения потоков и передачи запахов.
Расчет эффективности рекуператора.
В технических характеристиках рекуперативных вентиляционных установок многих фирм-производителей приводят, как правило, два значения коэффициента рекуперации – по температуре воздуха и его энтальпии. Расчет эффективности работы рекуператора может быть произведен по температуре или по энтальпии воздуха. Расчет по температуре учитывает явное теплосодержание воздуха, а по энтальпии – учитывается еще и влагосодержание воздуха (его относительную влажность). Расчет по энтальпии считается более точным. Для расчета необходимы исходные данные. Их получают путем замера температуры и влажности воздуха в трех местах: в помещении (где вентиляционная установка обеспечивает воздухообмен), на улице и в сечении приточной воздухораспределительной решетки (откуда в помещение попадает обработанный наружный воздух). Формула для расчета эффективности рекуперации по температуре следующая:
Kt = (T4 – T1) / (T2 – T1) , где
- Kt – коэффициент эффективности рекуператора по температуре;
- T1 – температура наружного воздуха, oC;
- T2 – температура вытяжного воздуха (т.е. воздуха в помещении), оС;
- T4 – температура приточного воздуха, оС.
Энтальпия воздуха – это теплосодержание воздуха, т.е. количество теплоты, содержащейся в нем, отнесенное к 1 кг сухого воздуха. Энтальпию определяют с помощью i-d диаграммы состояния влажного воздуха, нанеся на нее точки, соответствующие замеренной температуре и влажности в помещении, на улице и приточного воздуха. Формула для расчета эффективности рекуперации по энтальпии следующая:
Kh = (H4 – H1) / (H2 – H1) , где
- Kh – коэффициент эффективности рекуператора по энтальпии;
- H1 – энтальпия наружного воздуха, кДж/кг;
- H2 –энтальпия вытяжного воздуха (т.е. воздуха в помещении), кДж/кг;
- H4 – энтальпия приточного воздуха, кДж/кг.
Экономическая целесообразность применения приточно-вытяжных установок с рекуперацией.
В качестве примера возьмем технико-экономическое обоснование применения вентиляционных установок с рекуперацией в системах приточно-вытяжной вентиляции помещений автосалона.
Исходные данные:
- объект – автосалон общей площадью 2000 м2;
- средняя высота помещений 3-6 м, состоит из двух выставочных залов, офисной зоны и станции технического обслуживания (СТО);
- для приточно-вытяжной вентиляции указанных помещений были выбраны вентиляционные установки канального типа: 1 единица с расходом воздуха 650 м3/час и потребляемой мощностью 0,4 кВт и 5 единиц с расходом воздуха 1500м3/час и потребляемой мощностью 0,83 кВт.
- гарантированный диапазон наружных температур воздуха для канальных установок составляет (-15…+40) оС.
Для сравнения энергопотребления произведем расчет мощности канального электрического воздухонагревателя, которая необходима для подогрева наружного воздуха в холодное время года в приточной установке традиционного типа (состоящей из обратного клапана, канального фильтра, вентилятора и электрического воздухонагревателя) с расходом воздуха 650 и 1500 м3/час соответственно. При этом стоимость электроэнергии принимаем 5 рублей за 1кВт*час.
Наружный воздух необходимо нагреть от -15 до +20оС.
Расчет мощности электрического воздухонагревателя произведен по уравнению теплового баланса:
Qн = G*Cp*T, Вт , где:
- Qн – мощность воздухонагревателя, Вт;
- G - массовый расход воздуха через воздухонагреватель, кг/сек;
- Ср – удельная изобарная теплоемкость воздуха. Ср = 1000кДж/кг*К;
- Т – разность температур воздуха на выходе из воздухонагревателя и входе.
T = 20 – (-15) = 35 оС.
1. 650 / 3600 = 0,181 м3/сек
р = 1, 2 кг/м3 – плотность воздуха.
G = 0, 181*1, 2 = 0,217 кг/сек
Qн = 0, 217*1000*35 = 7600 Вт.
2. 1500 / 3600 = 0, 417 м3/сек
G = 0, 417*1, 2 = 0, 5 кг/ сек
Qн = 0, 5*1000*35 = 17500 Вт.
Таким образом, применение в холодное время года канальных установок с рекуперацией тепла вместо традиционных с использованием электрических воздухонагревателей позволяет уменьшить затраты электроэнергии при одном и том же количестве подаваемого воздуха более чем в 20 раз и тем самым позволяет снизить затраты и соответственно увеличить прибыль автосалона. Кроме этого, применение установок с рекуперацией позволяет уменьшить финансовые затраты потребителя на энергоносители на отопление помещений в холодное время года и на их кондиционирование в теплое время примерно на 50%.
Для большей наглядности произведем сравнительный финансовый анализ энергопотребления систем приточно-вытяжной вентиляции помещений автосалона, укомплектованных установками с рекуперацией тепла канального типа и традиционных установок с электрическими воздухонагревателями.
Исходные данные:
Система 1.
Установки с рекуперацией тепла расходом 650 м3/час– 1ед. и 1500 м3/час – 5ед.
Суммарная электрическая потребляемая мощность составит: 0,4 + 5*0,83 = 4,55 кВт*час.
Система 2.
Традиционные канальные приточно-вытяжные вентиляционные установки -1ед. с расходом 650м3/час и 5ед. с расходом 1500м3/час.
Суммарная электрическая мощность установки на 650 м3/час составит:
- вентиляторы – 2*0,155 = 0,31 кВт*час;
- автоматика и приводы клапанов – 0,1кВт*час;
- электрический воздухонагреватель – 7,6 кВт*час;
Итого: 8,01 кВт*час.
Суммарная электрическая мощность установки на 1500м3/час составит:
- вентиляторы – 2*0,32 = 0,64кВт*час;
- автоматика и приводы клапанов – 0,1 кВт*час;
- электрический воздухонагреватель – 17,5 кВт*час.
Итого: (18,24 кВт*час)*5 = 91,2 кВт*час.
Всего: 91,2 + 8,01 = 99,21кВт*час.
Принимаем период использования подогрева в системах вентиляции 150 рабочих дней в год по 9 часов. Получаем 150*9 =1350 часов.
Энергопотребление установок с рекуперацией составит: 4,55*1350 = 6142,5 кВт
Эксплуатационные затраты составят: 5 руб.*6142,5 кВт = 30712,5 руб. или в относительном (к общей площади автосалона 2000 м2) выражении 30172,5 / 2000 = 15,1 руб./м2.
Энергопотребление традиционных систем составит: 99,21*1350 = 133933,5 кВт Эксплуатационные затраты составят: 5 руб.*133933,5 кВт = 669667,5 руб. или в относительном (к общей площади автосалона 2000 м2) выражении 669667,5 / 2000 = 334,8 руб./м2.
Общеизвестно, что существует несколько типов систем вентиляции помещений. Наибольшее распространение имеет естественная вентиляция, когда приток и отток воздуха осуществляется через вентиляционные шахты, открытые форточки и окна, а также сквозь щели и неплотности в конструкциях.
Конечно, естественная вентиляция нужна, однако ее эксплуатация связана с массой неудобств, к тому же экономии средств с ее устройством добиться почти невозможно. Да и назвать вентиляцией движение воздуха через приоткрытые окна и двери можно с большой натяжкой – скорее всего, это будет обычное проветривание. Для достижения необходимой интенсивности циркуляции воздушных масс окна должны быть открыты круглосуточно, что недостижимо в холодное время года.
Именно поэтому более правильным и рациональным подходом считается устройство принудительной либо механической вентиляции. Иногда без принудительной вентиляции просто невозможно обойтись, чаще всего прибегают к ее устройству в производственных помещениях с ухудшенными условиями труда. Оставим в стороне промышленников и производственником и обратим свое внимание на жилые дома и квартиры.
Нередко в погоне за экономией владельцы коттеджей, загородных домов или квартир вкладывают массу средств в утепление и герметизацию жилья и только потом понимают, что из-за недостатка кислорода трудно находиться в помещении.
Решение проблемы является очевидным – нужно устраивать вентиляцию. Подсознание подсказывает, что оптимальным вариантом будет устройство энергосберегающей вентиляции. Отсутствие правильно спроектированной вентиляции может стать причиной превращения жилья в настоящую газовую камеру. Не допустить этого можно выбрав наиболее рациональное решение – устройство принудительно-вытяжной вентиляции с рекуперацией тепла и влаги.
Что такое рекуперация тепла
Под рекуперацией понимают его сохранение. Выходящий поток воздуха изменяет температуру (нагревает, охлаждает) подаваемого воздуха приточно-вытяжной установкой.
Схема работы вентиляции с рекуперацией тепла
Конструкция полагает разделение воздушных потоков для предотвращения их смешивания. Однако при использовании роторного теплообменника не исключается вероятность попадания отводимого воздушного потока в поступающий.
Сам по себе «Рекуператор воздуха» представляет собой устройство, обеспечивающее утилизацию тепла отводимых газов. Сквозь разделяющую стенку между теплоносителями производится теплообмен, при этом направление движения воздушных масс остается неизменным.
Важнейшая характеристика рекуператора определяется эффективностью рекуперации или КПД. Его расчет определяется из отношения максимально возможного получения тепла и фактически полученного тепла за теплообменником.
Коэффициент полезного действия рекуператоров может колебаться в широком диапазоне – от 36 до 95%. Этот показатель определяется видом используемого рекуператора, скоростью движения воздушного потока сквозь теплообменник и разницей температур отводимого и поступающего воздуха.
Виды рекуператоров и их преимущества и недостатки
Известно 5 основных видов рекуператоров воздуха:
- Пластинчатый;
- Роторный;
- С промежуточным теплоносителем;
- Камерный;
- Тепловые трубки.
Пластинчатый
Пластинчатый рекуператор характеризуется наличием пластиковых или металлических пластин. Отводимый и поступающий потоки проходят по разные стороны теплопроводящих пластин, не контактируя между собой.
В среднем КПД таких устройств составляет 55-75%. Положительной характеристикой можно считать отсутствие подвижных деталей. К недостаткам можно отнести образование конденсата, что нередко приводит к обмерзанию рекуперативного устройства.
Существуют пластинчатые рекуператоры с влагопроницаемыми пластинами, обеспечивающими отсутствие конденсата. КПД и принцип работы остаются неизменными, устранена вероятность обмерзания рекуператора, однако вместе с тем исключена и возможность использовать устройство для снижения уровня влажности в помещении.
В роторном рекуператоре передача тепла осуществляется при помощи ротора, который вращается, находясь между приточным и вытяжным каналами. Данное устройство характеризуется высоким уровнем КПД (70-85%) и сниженным потреблением электроэнергии.
К недостаткам можно отнести незначительное смешивание потоков и, как результат, распространение запахов, большое количество сложной механики, что затрудняет процесс обслуживания. Роторные рекуператоры эффективно используются для осушения помещений, поэтому являются идеальным вариантом для установки в бассейнах.
Рекуператоры с промежуточным теплоносителем
В рекуператорах с промежуточным теплоносителем за передачу тепла отвечает вода или водно-гликолиевый раствор.
Отводимый воздух обеспечивает нагрев теплоносителя, который, в свою очередь, передает тепло поступающему воздушному потоку. Воздушные потоки не смешиваются, устройство характеризуется относительно невысоким КПД (40-55%), обычно, используется в производственных помещениях с большой площадью.
Камерные рекуператоры
Отличительной особенностью камерных рекуператоров является наличие заслонки, разделяющей камеру на две части. Высокий КПД (70-80%) достигается благодаря возможности изменения направления воздушного потока путем движения заслонки.
К недостаткам можно отнести небольшое смешивание потоков, передачу запахов и наличие подвижных деталей.
Тепловые трубки представляют собой, целую систему наполненных фреоном трубок, который испаряется при повышении температуры. В иной части трубок фреон охлаждается с образованием конденсата.
К достоинствам можно отнести исключение смешивания потоков и отсутствие подвижных частей. КПД достигает 65-70%.
Нужно отметить, что раньше рекуперативные установки в силу своих значительных габаритов использовались исключительно на производстве, сейчас на строительном рынке представлены рекуператоры с небольшими размерами, которые можно успешно использовать даже в небольших домах и квартирах.
Главным достоинством рекуператоров является отсутствие потребности в устройстве воздуховодов. Однако этот фактор можно рассматривать и как недостаток, так как для эффективной работы требуется достаточное удаление между отводимым и приточным воздухом, в противном случае свежий воздух тут же вытягивается из помещения. Минимально допустимое расстояние между противоположными воздушными потоками должно составлять не менее 1,5-1,7 м.
Для чего нужна рекуперация влаги
Рекуперация влаги необходима для достижения комфортного соотношения влажности и температуры помещения. Лучше всего человек чувствует себя при уровне влажности в 50-65%.
В период работы отопления и без того сухой зимний воздух теряет еще больше влаги из-за контакта с горячим теплоносителем, нередко уровень влажности снижается до 25-30%. При таком показателе человек не только ощущает дискомфорт, но и наносит существенный вред своему здоровью.
Кроме того, что пересушенный воздух оказывает негативное влияние на самочувствие и здоровье человека, он еще и наносит непоправимый урон мебели и столярным изделиям из натурального дерева, а также картинам и музыкальным инструментам. Кто-то может сказать, что сухой воздух помогает избавиться от сырости и плесени, но это далеко не так. С подобными недостатками можно справиться путем утепления стен и устройства качественной приточно-вытяжной вентиляции с сохранением комфортного уровня влажности.
Вентиляция с рекуперацией тепла и влаги: схема, виды, преимущества и недостатки
Что такое вентиляция с рекуперацией тепла. Как работает эта система, какие виды бывают и их плюсы и минусы.
Вентиляция с рекуперацией тепла
В период энергического кризиса и подорожания энергоресурсов применение энергосберегающих технологий во всех сферах хозяйствования становится особенно актуальным. Нельзя недооценивать в этом вопросе роль рекуператоров тепла. Инженерные установки не только существенно экономят газ для обогрева помещений, но и, практически, бесплатно возвращают обратно тепло для полезного использования, предназначенное для выброса в атмосферу.
Работа воздухообмена с подогревом воздуха
Приточно-вытяжная вентиляция с рекуперацией тепла решает три основные задачи:
- обеспечение помещения свежим воздухом;
- возвращение тепловой энергии, уходящей с воздухом через систему вентиляции;
- недопущение проникновения в дом холодных потоков.
Схематически процесс можно рассмотреть на примере. Организация воздухообмена необходима даже в зимний морозный день с температурой за окном -22°С. Для этого включенная приточно-вытяжная система при работающем вентиляторе нагнетает воздух с улицы. Он просачивается через фильтрующие элементы и уже очищенный поступает на теплообменник.
По мере прохождения сквозь него воздух успевает прогреться до +14-+15°С. Такая температура может считаться достаточной, но не отвечающей санитарным нормам для проживания. Для достижения параметров комнатной температуры необходимо довести воздух до требуемых значений с помощью функции догрева до +20°С в самом рекуператоре при помощи калорифера (водяного, электрического) небольшой мощности - 1 или 2 кВт. С такими температурными показателями воздух попадает в комнаты.
Калорифер функционирует в автоматическом режиме: при понижении наружной температуры воздуха он включается и работает, пока не подогреет до требуемых значений. В то же время, отработанный поток уже нагрет до «комфортных» 18 или 20 градусов. Удаляется с помощью встроенной вентиляционной установки, предварительно пройдя через теплообменную кассету. В ней он отдает тепло встречному холодному воздуху с улицы, и лишь потом уходит в атмосферу из рекуператора с температурой не более 14-15°С.
Внимание! Установка металлопластиковых конструкций нарушает естественную подачу свежих потоков воздуха в квартиру или дом. Решает проблему принудительная система, подающая не подогретый воздух с улицы, но и сводящая на «нет» эффективность энергосбережения от пластиковых окон. Приточно-вытяжная вентиляция с рекуператором это комплексное решение проблемы отопления с одновременно функционирующим воздухообменом, активный метод сохранения энергии.
Преимущества приточно-вытяжной системы с функцией подогрева
- Поставляет свежий воздух, улучшает качество воздушной среды внутри помещений.
- Предотвращает выпадение на поверхности влаги, образование конденсата, плесени и грибка.
- Устраняет условия появления в помещении вирусов, бактерий.
- Экономит расходы на электрическую и тепловую энергию путем восстановления потерь из уходящих потоков порядка 90% тепла.
- Способствует регулярному обмену воздушной среды.
- Многоплановость исполнения теплообменных систем расширяет сферу их применения на объектах различного типа.
- Экономичное использование и обслуживание. ТО, включающее очистку, замену фильтров, проверку всех узлов и компонентов системы, проводится ежегодно всего 1 раз.
Внимание! Малоэффективной будет характеризоваться работа рекуператоров в домах старой жилой застройки, где естественный воздухообмен обеспечивается деревянными конструкциями окон, щелями в деревянных полах и неплотностями в дверях. Наибольший эффект от рекуперации тепла наблюдается в современных постройках с качественной изоляцией помещений и хорошей герметичностью.
Виды теплообменных аппаратов
Выделяются самые распространенные четыре категории агрегатов:
- Роторный тип. Работает от электросети. Экономичный, но сложный в техническом исполнении. Рабочий элемент – вращающийся ротор с нанесенной по всей поверхности металлической фольгой. Теплообменник с проходящим внутри уличным воздухом реагирует на разность температур снаружи и внутри комнат. Это корректирует скорость его вращения. Меняется интенсивность подачи тепла, предотвращается обледенение рекуператора в зимний период, что позволяет не пересушивать воздух. Эффективность устройств довольно высокая и может составить 87%. При этом возможно смешивание встречных потоков (до 3 %от общего количества) и перетекание запахов, загрязнений.
- Пластинчатые модели. Считаются самыми «ходовыми» из-за демократичной цены и эффективности. Она достигает 40-65% благодаря алюминиевому теплообменнику. Из-за отсутствия вращающих и подвергающихся трению узлов и деталей считаются простыми в исполнении и надежными в эксплуатации. Воздушные потоки, разделенные алюминиевой фольгой, не диффундируют, проходят по обе стороны теплопроводящих элементов. Разновидность: пластинчатая модель с пластиковым теплообменником. Эффективность ее выше, а в остальном имеет те же характеристики.
Внимание! Пластинчатые устройства проигрывают перед ротационными в том, что промерзают и сушат воздух. Обязательно его дополнительное постоянное увлажнение. Оптимальная сфера применения – влажная среда бассейнов.
- Рециркуляционный вид. «Фишка» его в сложной конструкции и использовании жидкого носителя (воды, водно-гликолиевого раствора или антифриза) как промежуточного звена в передаче тепла. На вытяжном рукаве устанавливается теплообменник, забирающий тепло отходящего воздушного потока и нагревающего им жидкость. Другой теплообменник, но уже на заборе воздуха с улицы, отдает тепло входящему воздуху, не смешиваясь с ним при этом. КПД таких установок доходит до 65%, они не участвуют во влагообмене. Для работы необходимо электричество.
- Крышный вид устройств эффективен (58-68%), но для домашнего использования не пригоден. Применяется, как составное звено в вентиляции магазинов, цехов и других подобных помещений.
Расчет эффективности работы рекуператора
Можно ориентировочно просчитать, насколько эффективной будет смонтированная приточная вентиляция с рекуперацией тепла, как в зимний, так и летний период, когда установка работает на охлаждение. Формула расчета температуры приточного воздушного потока для установки в зависимости от числовой характеристики энергетической эффективности (КПД), температуры воздуха внешней и в помещении выглядит так:
Tпp = (tвн – tул)*КПД + tул,
где значения температуры:
Tпp – ожидаемая на выходе из рекуператора;
tвн – в помещении;
Для расчетов берется паспортное значение эффективности прибора.
В качестве примера: при морозах -25°С и комнатной температуре +19°С, а также КПД установки 80% (0,8) расчет показывает, что искомые параметры воздуха после прохождения через теплообменник будут:
Tпp = (19 – (-25))*0,8 – 25 = 10,2°С
Получен расчетный температурный показатель воздуха после рекуператора. По факту, учитывая неизбежные потери, это значение будет находиться в пределах +8°С.
В жару при +30°С во дворе и 22°С в квартире воздух в теплообменнике той же эффективности, прежде чем попасть в помещение, охлаждается до расчетной температуры:
Tпp = tул + (tвн – tул) * КПД
Подставляя данные, получаем:
Tпp = 30 + (22-30)*0,8 = 23,6°С
Внимание! Заявленный производителем КПД установки и фактический будут отличаться. На поправку значения влияет влажность воздуха, вид кассеты теплообменника, значение разницы температур снаружи и внутри. При неправильно смонтированном и эксплуатируемом рекуператоре эффективность работы тоже снижается.
Современный вентиляционные энергосберегающие системы с включением в них рекуператоров – еще один шаг к экономному расходованию теплоносителей. Причем, установки температурного обмена актуальны зимой, но не менее востребованы и летом.
Приточно-вытяжная вентиляция с рекуперацией тепла
Как работает приточно-вытяжная вентиляция с рекуперацией тепла. Какие приемущества дает приточно- вытяжная вентиляция с рекуператором.
Системы приточно-вытяжной вентиляции с рекуперацией и рециркуляцией тепла
Рециркуляция воздуха в системах вентиляции представляет собой смешение некоторого количества отработанного (вытяжного) воздуха, к приточному потоку. Благодаря этому достигается снижение затрат энергии на нагрев свежего воздуха в зимний период года.
Схема приточно-вытяжной вентиляции с рекуперацией и рециркуляцией,
где L – расход воздуха, T – температура.
Рекуперация тепла в вентиляции – это способ передачи тепловой энергии от потока отработанного воздуха, к потоку приточного. Рекуперация применяется при наличии разности температур между удаляемым и приточным воздухом, для повышения температуры свежего воздуха. Данный процесс не подразумевает смешения воздушных потоков, процесс передачи теплоты происходит через какой-либо материал.
Температура и движение воздуха в рекуператоре
Устройствами, которые осуществляют рекуперацию теплоты, носят название рекуператоры теплоты. Они бывают двух видов:
Теплообменники-рекуператоры – они передают тепловой поток через стенку. Они чаще всего встречаются в установках систем приточно-вытяжной вентиляции.
Регенеративные рекуператоры – в первом цикле, которые нагреваются от уходящего воздуха, во втором охлаждаются, отдавая тепло приточному.
Система приточно-вытяжной вентиляции с рекуперацией является наиболее распространенным способом использования рекуперации теплоты. Основным элементом данной системы является приточно-вытяжная установка, в составе которой установлен рекуператор. Устройство приточной установки с рекуператором, позволяет передать нагреваемому воздуху до 80-90% теплоты, что значительно снижает мощность калорифера, в котором происходит подогрев приточного воздуха, в случае нехватки теплового потока от рекуператора.
Особенности применения рециркуляции и рекуперации
Основным отличием рекуперации от рециркуляции является отсутствием подмешивания воздуха из помещения к наружному. Рекуперация тепла применима для большинства случаев, в то время как рециркуляция имеет ряд ограничений, которые указаны в нормативных документах.
СНиП 41-01-2003 не допускает повторную подачу воздуха (рециркуляция) в следующих ситуациях:
- В помещениях, расход воздуха в которых определяется из расчета выделяемых вредных веществ;
- В помещениях, в которых имеются болезнетворные бактерии и грибки в повышенных концентрациях;
- В помещениях, с наличием вредных веществ, возгоняемые при контакте с нагретыми поверхностями;
- В помещениях категории Б и А;
- В помещениях, в которых производятся работы с вредными или горючими газами, парами;
- В помещениях категории В1-В2, в которых могут выделяться горючи пыли и аэрозоли;
- Из систем, с наличием в них местных отсосов вредных веществ и взрывоопасных смесей с воздухом;
- Из тамбуров-шлюзов.
Рециркуляция в приточно-вытяжных установках активно применяется чаще при большой производительности систем, когда воздухообмен может быть от 1000-1500 м 3 /ч до 10000-15000 м 3 /ч. Удаляемый воздух несет в себе большой запас тепловой энергии, подмешивание его в поток наружного, позволяет повысить температуру приточного воздуха, тем самым снизится требуемая мощность нагревательного элемента. Но в подобных случаях перед повторной подачей в помещение, воздух должен пройти систему фильтрации.
Вентиляция с рециркуляцией позволяет повысить энергоэффективность, решить проблему энергосбережения в случае, когда 70-80% удаляемого воздуха поступает в систему вентиляции повторно.
Приточно-вытяжные установки с рекуперацией возможно устанавливать практически при любых расходах воздуха (от 200 м 3 /ч и до нескольких тысяч м 3 /ч), как при маленьких так и при больших. Рекуперация так же позволяет передавать тепло от вытяжного воздуха к приточному, тем самым снижая потребность энергии на нагревательном элементе.
Относительно небольшие установки применяют в системах вентиляции квартир, коттеджей. В практике приточно-вытяжные установки монтируют под потолком (например, между перекрытием и навесным потолком). Данное решение требует от установки некоторых специфических требований, а именно: незначительные габаритные размеры, низкий уровень шума, простое обслуживание.
Приточно-вытяжная установка с рекуперацией требует обслуживания, что обязывает сделать в потолке люк для обслуживания рекуператора, фильтров, нагнетателей (вентиляторов).
Основные элементы приточно-вытяжных установок
Приточно-вытяжная установка с рекуперацией или с рециркуляцией, имеющая в своем арсенале и первый, и второй процесс, всегда сложный организм, требующий высокоорганизованного управления. Приточно-вытяжная установка скрывает за своим защитным коробом такие основные компоненты как:
- Два вентилятора различного типа, которые определяют производительность установки по расходу.
- Теплообменник рекуператор – нагревает приточный воздух путем передачи тепла от удаляемого воздуха.
- Электрический нагреватель – нагревает приточный воздух до нужных параметров, в случае нехватки теплового потока от вытяжного воздуха.
- Воздушный фильтр – благодаря нему производится контроль и очистка наружного воздуха, а также обработка вытяжного перед рекуператором, для защиты теплообменника.
- Воздушные клапана с электроприводами – могут быть установлены перед выходными воздуховодами для дополнительного регулирования воздушным потоком и перекрытия канала при выключенном оборудования.
- Байпас – благодаря которому воздушный поток можно направить мимо рекуператора в теплый период года, тем самым не нагревать приточный воздух, а подавать его напрямую в помещение.
- Камера рециркуляции – обеспечивающая подмес удаляемого воздуха в приточный, тем самым обеспечивая рециркуляцию воздушного потока.
Помимо основных составляющих приточно-вытяжной установки в нее также входит большое количество мелких комплектующих, таких как датчики, система автоматики для управления и защиты и т.д.
Вентиляция с рекуперацией, рециркуляцией
Проектирование, расчет, требования к вентиляции с рекуперацией, рециркуляцией. Бесплатная консультация.
Особенности системы вентиляции с рекуперацией тепла, ее принцип работы
Рекуператор тепла зачастую становится частью системы вентиляции. Однако не многие знают, что это за устройство и какие особенности оно имеет. Также немаловажным вопросом становится то, будет ли окупаться приобретение рекуператора, как он изменит работу системы вентилирование, можно ли создать подобный элемент своими руками. На этим и многие другие вопросы дадим ответы в нижеприведенной информации.
Принцип работы системы
Необычное наименование дали обычному теплообменнику. Задача устройства заключается в отбирании части тепла с уже отработанного отведенного воздуха с помещения. Отобранное тепло передается потоку, который поступает из системы подачи чистого воздуха. Вышеприведенная информация определяет то, что цель использования подобной системы – экономия на обогреве дома. При этом следует отметить нижеприведенные моменты:
- В летнее время система позволяет снизить расходы на кондиционировании работы.
- Рассматриваемое устройство может работать в обе стороны, то ест забирать тепло в приточной и отводящей системе.
Принцип работы системы с рекуперацией тепла
Вышеприведенная информация определяет то, что рекуператор тепла устанавливается во многих системах вентиляции. Она не активная, многие варианты исполнения не потребляют энергию, не издают шум, имеют средний показатель эффективности. Устанавливались теплообменники на протяжении многих лет, но в последнее время у многих возникает вопрос, есть ли причины для того, чтобы усложнять систему вентиляции этим устройством, которое имеет довольно много проблем по причине работы в среде с различной температурой.
Проблемы с установкой системы
Потенциальных проблем, связанных с использованием подобного оборудования, практически нет. Некоторые решаются производителем, другие становятся головной болью покупателя. К основным проблемам можно отнести:
- Образование конденсата. Законы физики определяют то, что при прохождении воздуха с высокой температурой через холодную замкнутую среду происходит образование конденсата. Если температура окружающей среды ниже нуля, то ребра начнут обмерзать. Вся информация, приведенная в этом пункте, определяет существенное снижение эффективности работы устройства.
- Энергоэффективность. Все вентиляционные системы, работающие совместно с рекуператором, зависимы от энергии. Проводимый экономический расчет определяет то, что полезными будут лишь те модели рекуператоров, которые будут сберегать больше энергии, чем тратить.
- Период окупаемости. Как ранее было отмечено, устройство предназначено для экономии энергии. Важным определяющим фактором является то, сколько лет необходимо для того, чтобы покупка и установка рекуператоров окупилась. Если рассматриваемый показатель превышает отметки 10 лет, то смысла в установке нет, так как за это время другие элементы системы потребуют замены. Если расчеты показывают, что период окупаемости составляет 20 лет, то возможность установки устройства не следует рассматривать.
Возникновение конденсата на вент. системе
Вышеприведенные проблемы стоит учитывать при выборе теплообменника, которые существует несколько десятков видов.
Варианты исполнения устройства
Врезка: Важно: Существует несколько вариантов исполнения теплообменника. Рассматривая принцип работы устройства, следует учитывать, что он зависит от типа самого устройства. Пластинчатый тип устройства представляет собой устройство, в котором приточный и вытяжной канал проходят через общий корпус. Два канала разделены перегородками. Перегородка состоит из многочисленного количества пластин, которые зачастую изготавливаются из меди или алюминия. Важно отметить, что медный состав обладает большей теплопроводностью, нежели алюминий. Однако алюминий дешевле.
К особенностям рассматриваемого устройства можно назвать следующее:
- Тепло из одного канала в другой передается при помощи теплопроводных пластин.
- Принцип передачи тепла определяет то, что проблема появления конденсата возникает сразу поле включения теплообменника в систему.
- Для того чтобы исключить вероятность появления конденсата устанавливается датчик обледенения термического типа. При появлении сигнала с датчика реле открывает специальный клапан – байпас.
- При открытии клапана холодный воздух поступает в два канала.
Этот класс устройства можно отнести к низкой ценовой категории. Это связано с тем, что при создании конструкции используется примитивный метод передачи тепла. Эффективность подобного метода ниже. Важным моментом можно назвать то, что стоимость устройства зависит от его размеров и размеров самой приточной системы. Примером можно назвать размер канала 400 на 200 миллиметров и 600 на 300 миллиметров. Разница в цене составит более 10 000 рублей.
Схема вентиляции с рекуперацией
Конструкция состоит из следующих элементов:
- Два входных воздуховода: один для свежего воздух, второй для отработанного.
- Из фильтра грубой очистки подаваемого воздуха с улицы.
- Непосредственно самого теплообменника, который находится в центральной части.
- Заслонки, которая необходима для подачи воздуха в случае обледенения.
- Клапан для слива конденсата.
- Вентилятора, которые отвечает за нагнетание воздуха в системе.
- Два канала с обратной стороны конструкции.
Размеры теплообменника зависят от того, какой мощности вентиляционная система и каких размеров воздуховоды.
Следующим типом конструкции можно назвать устройство с тепловыми трубками. Его устройство практически идентично предыдущему. Разница заключается лишь в том, что конструкция не имеет огромное количество пластин, которые пронизывают перегородку между каналами. Для этого используется тепловая трубка – специальное устройство, которое переносит тепло. Преимуществом системы можно назвать то, что на более теплом конце герметичной медной трубки испаряется фреон. Конденсат скапливается на более холодном конце. К особенностям рассматриваемой конструкции можно отнести:
Работа системы имеет следующие особенности:
- В системе есть рабочая жидкость, которая поглощает тепловую энергию.
- Пар распространяется от более теплой точки к холодной.
- Законы физики определяют то, что пар конденсируется обратно в жидкость и отдает сохраненную температуру.
- По фитилю вода снова оттекает к теплой точке, где снова образуется в пар.
Конструкция герметична и работает с высокой эффективностью. Преимуществом можно назвать то, что конструкция имеет меньшие размеры и более проста в эксплуатации.
Роторный тип можно назвать современным вариантом исполнения. На границе между приточным и вытяжным каналом находится устройство, которое имеет лопасти – они медленно вращаются. Устройство создано так, что пластины нагреваются с одной стороны и передают со второй при путем вращения. Это связано с тем, что лопасти расположены под определенным углом для перенаправления тепла. К особенностям роторной системы можно отнести следующее:
- Довольно высокий КПД. Как правило, пластинчатые системы и трубчатые имеют КПД не более 50%. Это связано с тем, что они не имеют активных элементов. При перенаправлении воздушного потока повысить КПД системы можно до 70-75%.
- Вращение лопастей также определяет решение проблемы с образованием конденсата на поверхности. Также решается проблема при низкой влажности в холодное время года.
Однако можно также выделить несколько недостатков:
- Как правило, чем сложнее система, тем она менее надежна. Роторная система имеет вращающийся элемент, который может выходить из строя.
- Если в помещении повышенная влажность, то использовать конструкцию не рекомендуется.
Также важно понимать, что камеры рекуператоров не имеют герметичного разделения. Этот момент определяет передачу запаха с одной камеры в другую. В целом роторная система напоминает своеобразный вентилятор довольно больших габаритных размеров с громоздкими лопастями. Для повышения эффективности работы системы устройство должно подключаться к источнику питания.
Теплоноситель промежуточного типа представляет собой классическую конструкцию, которая состоит из водяного отопления с конвекторами и насосами. Система используется крайне редко, по причине низкого КПД и сложности конструкции. Однако она практически не заменима в случае, когда приточный и вытяжной канал находятся на большом расстоянии друг от друга. Тепло передается через воду, которая используется на протяжении многих лет при создании подобных систем. Для обеспечения циркуляции воды в независимости от расположения устройств в системе установлен насос. Важно понимать, что конструктивные особенности в данном случае определяют малую надежность системы и необходимость проведения периодических осмотров.
Особенности системы вентиляции с рекуперацией тепла, ее принцип работы
Вентиляция с рекуперацией тепла обеспечивают комфортный и здоровый микроклимат в доме и сохранение тепла. Определение эффективности и варианты исполнения.
Приточно-вытяжная вентиляция с рекуперацией тепла: принцип действия, обзор достоинств и недостатков
Поступление свежего воздуха в холодный период времени приводит к необходимости его нагрева для обеспечения правильного микроклимата помещений. Для минимизации затрат электроэнергии может быть использована приточно-вытяжная вентиляция с рекуперацией тепла.
Понимание принципов ее работы позволит максимально эффективно уменьшить теплопотери с сохранением достаточного объема замещаемого воздуха.
Энергосбережение в системах вентиляции
В осенне-весенний период при вентиляции помещений серьезной проблемой является большая разность температур поступающего и находящегося внутри воздуха. Холодный поток устремляется вниз и создает неблагоприятный микроклимат в жилых домах, офисах и на производстве или недопустимый вертикальный градиент температуры в складе.
Распространенным решением проблемы является интеграция в приточную вентиляцию калорифера, с помощью которого происходит нагрев потока. Такая система требует затрат электроэнергии, в то время как значительный объем выходящего наружу теплого воздуха ведет к существенным потерям тепла.
Если каналы притока и отвода воздуха расположены рядом, то можно частично передать тепло выходящего потока входящему. Это позволит уменьшить потребление электроэнергии калорифером или вовсе отказаться от него. Устройство для обеспечения теплообмена между разнотемпературными потоками газов называется рекуператором.
В теплое время года, когда температура наружного воздуха значительно превышает комнатную, можно использовать рекуператор для охлаждения входящего потока.
Устройство блока с рекуператором
Внутреннее устройство систем приточно-вытяжной вентиляции с интегрированным рекуператором достаточно простое, поэтому возможна их самостоятельная поэлементная покупка и установка. В том случае если сборка или самостоятельный монтаж вызывает сложности можно приобрести готовые решения в виде типовых моноблочных или индивидуальных сборных конструкций под заказ.
Основные элементы и их параметры
Корпус с тепло- и шумоизоляцией выполняют как правило из листовой стали. В случае стенового монтажа он должен выдерживать давление, которое возникает при запенивании щелей вокруг блока, а также не допускать вибрацию от работы вентиляторов.
В случае распределенного забора и притока воздуха по различным помещениям к корпусу присоединяют систему воздуховодов. Ее оснащают клапанами и заслонками для распределения потоков.
При отсутствии воздуховодов на приточное отверстие со стороны помещения устанавливают решетку или диффузор для распределения потока воздуха. На приточное отверстие со стороны улицы монтируют воздухозаборную решетку наружного типа во избежание попадания в систему вентиляции птиц, крупных насекомых и сора.
Движение воздуха обеспечивают два вентилятора осевого или центробежного типов действия. При наличии рекуператора естественная циркуляция воздуха в достаточном объеме невозможна по причине создаваемого этим узлом аэродинамического сопротивления.
Наличие рекуператора предполагает установку фильтров мелкой очистки на входе обоих потоков. Это необходимо для уменьшения интенсивности засорения пылью и жировыми отложениями тонких каналов теплообменника. В противном случае для полноценного функционирования системы придется увеличить частоту проведения профилактических работ.
Один или несколько рекуператоров занимают основной объем приточно-вытяжного устройства. Их монтируют по центру конструкции.
В случае типичных для территории сильных морозов и недостаточного КПД рекуператора для нагрева наружного воздуха можно дополнительно установить калорифер. Также по необходимости монтируют увлажнитель, ионизатор и другие устройства для создания благоприятного микроклимата в помещении.
Современные модели предусматривают наличие электронного блока управления. Сложные модификации имеют функции программирования режимов работы в зависимости от физических параметров воздушной среды. Внешние панели имеют привлекательный вид, благодаря чему хорошо могут быть вписаны в любой интерьер помещения.
Решение проблемы возникновения конденсата
Охлаждение поступающего из помещения воздуха создает предпосылки для разгрузки влаги и образования конденсата. В случае высокой скорости потока большая его часть не успевает скапливаться в рекуператоре и выходит наружу. При медленном движении воздуха значительная часть воды остается внутри устройства. Поэтому необходимо обеспечить сбор влаги и вывод ее за пределы корпуса приточно-вытяжной системы.
Вывод влаги производят в закрытую емкость. Ее размещают только внутри помещения во избежание перемерзания каналов оттока при минусовых температурах. Алгоритма надежного расчета объема получаемой воды при использовании систем с рекуператором нет, поэтому его определяют экспериментальным путем.
Повторное использование конденсата для увлажнения воздуха нежелательно, так как вода впитывает многие загрязнители, такие как человеческий пот, запахи и т.д.
Значительно уменьшить объем конденсата и избежать связанных с его появлением проблем можно организовав отдельную вытяжную систему из ванной комнаты и кухни. Именно в этих помещениях воздух имеет наибольшую влажность. При наличии нескольких вытяжных систем воздухообмен между технической и жилой зоной необходимо ограничить с помощью установки обратных клапанов.
В случае охлаждения выходящего потока воздуха до отрицательных температур внутри рекуператора происходит переход конденсата в наледь, что вызывает сокращение живого сечения потока и, как следствие, – уменьшение объема или полное прекращения вентиляции.
Для периодического или разового размораживания рекуператора устанавливают байпас – обходной канал для движения приточного воздуха. При пропуске потока в обход устройства происходит прекращение теплоотдачи, нагрев теплообменника и переход наледи в жидкое состояние. Вода стекает в емкость сбора конденсата или происходит ее испарение наружу.
При прохождении потока через байпас отсутствует нагрев приточного воздуха посредством рекуператора. Поэтому при активации данного режима необходимо автоматическое включение калорифера.
Особенности различных типов рекуператоров
Существует несколько конструктивно различающихся вариантов реализации теплообмена между холодным и нагретым воздушными потоками. Каждый из них имеет свои отличительные особенности, которые определяют основное предназначение для каждого типа рекуператора.
Пластинчатый перекрестноточный рекуператор
В основе конструкции пластинчатого рекуператора лежат тонкостенные панели, соединенные поочередно таким образом, чтобы чередовать пропуск между ними разнотемпературных потоков под углом 90 градусов. Одной из модификаций такой модели является устройство с оребренными каналами для прохода воздуха. Оно обладает более высоким коэффициентом теплообмена.
Теплообменные панели могут быть выполнены из различного материала:
- медь, латунь и сплавы на основе алюминия обладают хорошей теплопроводностью и не подвержены ржавчине;
- пластмасса из полимерного гидрофобного материала с высоким коэффициентом теплопроводности обладают малым весом;
- гигроскопическая целлюлоза позволяет проникать конденсату через пластину и попадать обратно в помещение.
Недостатком является возможность образования конденсата при низких температурах. По причине небольшого расстояния между пластинами влага или наледь существенно увеличивают аэродинамическое сопротивление. В случае обмерзания необходимо перекрытие входящего потока воздуха для отогрева пластин.
Преимущества пластинчатых рекуператоров следующие:
- низкая стоимость;
- долгий срок службы;
- длительный период между профилактическим обслуживанием и простота его проведения;
- небольшие габариты и масса.
Такой тип рекуператора наиболее распространен для жилых и офисных помещений. Также его используют и в некоторых технологических процессах, например для оптимизации сгорания топлива при работе печей.
Барабанный или роторный тип
Принцип действия роторного рекуператора основан на вращении теплообменника, внутри которого расположены слои гофрированного металла, обладающего высокой теплоемкостью. В результате взаимодействия с выходящим потоком происходит нагрев сектора барабана, который впоследствии отдает тепло поступающему воздуху.
Преимущество роторных рекуператоров следующие:
- достаточно высокий КПД по сравнению с конкурирующими типами;
- возврат большого количества влаги, которая в виде конденсата остается на барабане и испаряется при контакте с поступающим сухим воздухом.
Этот тип рекуператора реже используют для жилых зданий при поквартирной или коттеджной вентиляции. Часто его применяют в крупных котельных для возврата тепла к печам или для обширных помещений промышленного или торгово-развлекательного назначения.
Однако у этого типа устройств есть существенные недостатки:
- относительно сложная конструкция с наличием подвижных частей, включающая электромотор, барабан и ременной привод, что требует постоянного обслуживания;
- повышенный уровень шума.
Иногда для устройств такого типа можно встретить термин «регенеративный теплообменник», что более правильно чем «рекуператор». Дело в том, что незначительная часть выходящего воздуха попадает обратно по причине неплотного прилегания барабана к корпусу конструкции.
Это накладывает дополнительные ограничения на возможность использования устройств такого типа. Например, в качестве теплоносителя нельзя использовать загрязненный воздух от печей отопления.
Система на основе трубок и кожуха
Рекуператор трубчатого типа состоит из расположенных в утепленном кожухе системы тонкостенных трубок небольшого диаметра, по которым происходит приток наружного воздуха. По кожуху производят вывод теплой воздушной массы из помещения, которая обогревает входящий поток.
Основные преимущества трубчатых рекуператоров следующие:
- высокий КПД, благодаря противоточному принципу движения теплоносителя и поступающего воздуха;
- простота конструкции и отсутствие подвижных частей обеспечивает низкий уровень шума и редко возникающую необходимость в обслуживании;
- долгий срок службы;
- наименьшее сечение среди всех типов устройств рекуперации.
Трубки для устройства такого типа используют или легкосплавные металлические или, что реже, – полимерные. Эти материалы не гигроскопичны, поэтому при значительной разнице температур потоков возможно образовании интенсивного конденсата в кожухе, что требует конструктивного решения по его удалению. Еще одним недостатком является то, что металлическая начинка обладает значительным весом, несмотря на небольшие габариты.
Простота конструкции трубчатого рекуператора делает этот тип устройств популярным для самостоятельного изготовления. В качестве внешнего кожуха обычно используют пластиковые трубы для воздуховодов, утепленные пенополиуретановой скорлупой.
Устройство с промежуточным теплоносителем
Иногда приточный и вытяжной воздуховоды расположены на некотором расстоянии друг от друга. Такая ситуация может возникнуть по причине технологических особенностей здания или санитарных требований по надежному разделению воздушных потоков.
В этом случае используют промежуточный теплоноситель, циркулирующий между воздуховодами по изолированному трубопроводу. В качестве среды для передачи тепловой энергии используют воду или водно-гликолевый раствор, циркуляцию которого обеспечивают работой насоса.
В том случае, если есть возможность использовать другой тип рекуператора, то лучше не применять систему с промежуточным теплоносителем, так как она обладает следующими существенными недостатками:
- низкий КПД по сравнению с другими типами устройств, поэтому для небольших помещений с малым расходом воздуха такие устройства не применяют;
- значительный объем и вес всей системы;
- необходимость дополнительного электрического насоса для циркуляции жидкости;
- повышенный шум от работы насоса.
Существует модификация этой системы, когда вместо принудительной циркуляции теплообменной жидкости используют среду с низкой точкой кипения, например фреон. В этом случае движение по контуру возможно естественным образом, но только в том случае если приточный воздуховод расположен над вытяжным.
Такая система не требует дополнительных затрат электроэнергии, но работает на обогрев только при значительном перепаде температур. Кроме того, необходима точная настройка точки изменения агрегатного состояния теплообменной жидкости, которая может быть реализована методом создания нужного давления или определенного химического состава.
Основные технические параметры
Зная требуемую производительность системы вентиляции и КПД теплообмена рекуператора легко рассчитать экономию на обогреве воздуха для помещения при конкретных климатических условиях. Сравнив потенциальную выгоду с затратами на покупку и обслуживание системы можно обоснованно сделать выбор в пользу рекуператора или стандартного калорифера.
Коэффициент полезного действия
Под коэффициентом полезного действия рекуператора понимают эффективность теплопередачи, которую рассчитывают по следующей формуле:
- Т п – температура поступающего воздуха внутрь помещения;
- Т н – температура наружного воздуха;
- Т в – температура воздуха в помещении.
Максимальное значение КПД при штатной скорости потока воздуха и определенном температурном режиме указывают в технической документации устройства. Его реальный показатель будет немного меньше. В случае самостоятельного изготовления пластинчатого или трубчатого рекуператора для достижения максимальной эффективности теплопередачи необходимо придерживаться следующих правил:
- Наилучший теплообмен обеспечивают противоточные устройства, затем перекрестноточные, а наименьшую – с однонаправленным движением обоих потоков.
- Интенсивность теплообмена зависит от материала и толщины стенок, разделяющих потоки, а также от длительности нахождения воздуха внутри устройства.
где Р (м 3 /час) – расход воздуха.
Стоимость рекуператоров с высоким КПД достаточно велика, они имеют сложную конструкцию и значительные размеры. Иногда можно обойти эти проблемы установкой нескольких более простых устройств таким образом, чтобы поступающий воздух последовательно проходил через них.
Производительность вентиляционной системы
Объем пропускаемого воздуха определяется статическим давлением, которое зависит от мощности вентилятора и основных узлов, создающих аэродинамическое сопротивление. Как правило, точный его расчет невозможен ввиду сложности математической модели, поэтому для типовых моноблочных конструкций проводят экспериментальные исследования, а для индивидуальных устройств осуществляют подбор компонентов.
Мощность вентилятора необходимо выбирать с учетом пропускной способности устанавливаемых рекуператоров любых типов, которая в технической документации указана как рекомендуемая скорость потока или объем пропускаемого устройством воздуха за единицу времени. Как правило, допустимая скорость воздуха внутри устройства не превышает значения 2 м/с.
В противном случае на высоких скоростях в узких элементах рекуператора происходит резкий рост аэродинамического сопротивления. Это приводит к лишним затратам электроэнергии, неэффективном прогреве наружного воздуха и сокращения срока службы вентиляторов.
Изменение направления потока воздуха создает дополнительное аэродинамическое сопротивление. Поэтому при моделировании геометрии воздуховода внутри помещения желательно минимизировать количество поворотов труб на величину 90 градусов. Диффузоры для рассеивания воздуха также увеличивают сопротивление, поэтому желательно не использовать элементы со сложным рисунком.
Загрязненные фильтры и решетки создают значительные помехи движению потока, поэтому их необходимо периодически прочищать или менять. Одним из эффективных способов оценки засоренности является установка датчиков, отслеживающих перепад давления на участках до фильтра и после него.
Принцип работы роторного и пластинчатого рекуператора:
Замер КПД рекуператора пластинчатого типа:
Бытовые и промышленные системы вентиляции с интегрированным рекуператором доказали свою энергетическую эффективность по сохранению тепла внутри помещений. Сейчас существует множество предложений по продаже и установке таких устройств как в виде готовых и опробованных моделей, так и по индивидуальному заказу. Провести расчет необходимых параметров и выполнить монтаж можно самостоятельно.
Приточно-вытяжная вентиляция с рекуперацией тепла: устройство и работа
Устройство приточно-вытяжной вентиляции с рекуперацией тепла. Типы рекуператоров, их достоинства и недостатки. Расчет эффективности и нюансы обеспечения требуемой производительности.
По каким параметрам выбирать рекуператор и где его устанавливать, какие помещения подключать к рекуператору – рекомендации специалистов.
В рамках проекта мы решили ответить на вопросы пользователей портала, касающиеся выбора и установки рекуператоров.
Из таких установок будет введена в эксплуатацию на нашей строительной площадке, что и определило тематику настоящей статьи. Вопросы, касающиеся разновидностей вентиляционных систем и критериев, по которым следует выбирать рекуператоры, разберем с помощью производителей – инженеров компании TURKOV.
В этой статье:
- разновидности вентиляционных систем;
- в чем преимущества рекуператора;
- по каким параметрам следует выбирать рекуператор;
- основные и дополнительные функции рекуператора;
- санитарные нормативы по установке и подключению рекуператора.
Итак, почему выбрана приточно-вытяжная система? Для полного понимания вопроса рассмотрим разновидности современных приточно-вытяжных систем.
Естественная вентиляция
Вентиляция естественного побуждения – система, в комплект которой входят настенные и оконные приточные клапаны (обеспечивающие доступ свежего воздуха в помещение), а также система вытяжных воздуховодов (удаляющих отработанный воздух из туалетов, ванных комнат и кухонь). Возможность воздухообмена при наличии естественной вентиляции обеспечивается разницей температур внутри и снаружи помещения.
Преимущества подобной системы состоят в ее простоте и дешевизне, к недостаткам можно отнести низкую эффективность и недостаточное качество воздухообмена. Также к минусам относится большая нагрузка на систему отопления и сезонная нестабильность. Например, летом, когда температура внутреннего и наружного воздуха выравнивается, воздухообмен в помещении практически прекращается. Зимой, наоборот, система работает эффективнее, но это требует дополнительных расходов на нагрев воздуха, поступающего с улицы.
Комбинированная система
Комбинированная вентиляция – система с принудительной вытяжкой и естественным притоком воздуха. Ее недостатки:
- Энергоэффективность комбинированной системы еще ниже, чем у естественной вентиляции. Дело в том, что вентиляторы создают стабильный расход отработанного воздуха, а это значительно увеличивает нагрузку на систему отопления.
- Низкое качество воздухообмена в доме (вытяжка работает не постоянно, а только в процессе пользования санузлами и кухнями). Даже при постоянной работе вытяжных вентиляторов воздухообмен в помещении не сможет достичь того уровня, который необходим для комфортного проживания.
Преимущества комбинированной системы состоят в ее относительно небольшой стоимости и в отсутствии сезонных проблем с тягой в вытяжном канале. Тем не менее, по уровню воздухообмена и по функционалу комбинированная система сильно не дотягивает до полноценной приточно-вытяжной вентиляции.
Классическая принудительная система
Классическая принудительная вентиляция обеспечивает циркуляцию воздушных потоков в заданных режимах и объемах. Данная система оснащается приточными и вытяжными воздуховодами, а также специализированным вентиляционным оборудованием, способным круглый год поддерживать стабильный воздухообмен в помещении. У таких систем есть один большой минус: они очень энергозатратны при использовании в зимний период. Объясняется это тем, что холодный воздушный поток с улицы необходимо постоянно нагревать до комфортной комнатной температуры.
Принудительная система с рекуператором
Принудительная вентиляция с рекуператором является самой совершенной системой, способной обеспечивать циркуляцию воздушных потоков в заданных режимах и объёмах. Ее эксплуатация связана с минимальными энергозатратами. Ведь поток с улицы вначале подогревается рекуператором (за счет тепла, которое содержится в вытяжном воздухе), а затем происходит дополнительный догрев воздуха до комфортной для человека температуры. Во многих развитых странах подобное техническое решение уже стало строительным стандартом, закрепленным на законодательном уровне.
Учитывая растущие требования к комфорту жилых помещений, любой новый дом целесообразно оснащать не просто стандартными вентиляционными каналами, а многофункциональной и экономичной системой принудительной вентиляции. Система на основе рекуператора обеспечивает приток чистого воздуха с комфортной температурой и одновременно удаляет отработанные воздушные массы за пределы помещения. Одновременно от вытяжного потока производится отбор и передача тепла (а иногда и влаги) приточному потоку.
Почему сделали выбор в пользу энтальпийного рекуператора
Во-первых, в отличие от классической вентиляции, рекуператор позволяет значительно экономить на эксплуатации оборудования. Во-вторых, стоимость рекуператора совсем ненамного превышает стоимость классического вентиляционного оборудования. В-третьих, во время работы рекуператора 80% тепла вытяжного воздуха возвращается обратно приточному, что значительно сокращает затраты на его обогрев.
В жаркие летние дни теплообмен происходит в обратном направлении, что позволяет экономить еще и на кондиционировании. Одновременно с передачей тепла в теплообменнике происходит передача влаги из вытяжного воздуха приточному. В физике есть такое понятие, как «точка росы». Это момент, когда относительная влажность воздуха достигает 100% и влага переходит из газового состояния в жидкое (конденсат). Конденсат проявляется на поверхности рекуператора, и чем ниже температура на улице, тем больше вероятность образования конденсата на рекуператоре. Так как энтальпийный рекуператор позволяет передавать влагу из вытяжного воздуха приточному, то «точка росы» смещается в зону очень низких температур. Рекуператор позволяет поддерживать более высокую относительную влажность приточного воздуха (в сравнении с классической вентиляцией), а также значительно повышает морозоустойчивость и убирает необходимость в отводе конденсата.
Наличие вышеперечисленных функций полностью объясняет выбор подобной приточно-вытяжной установки.
Представляем функциональную схему установки.
Где:
М1 и М2 – приточный и вытяжной вентиляторы;
D (1, 2, 3) – датчики температуры;
К (1, 2, 3) – теплообменники;
F (1, 2) – воздушные фильтры.
По каким параметрам следует выбирать рекуператор
Первое, на что требуется обратить внимание, выбирая модель приточно-вытяжного рекуператора, это на формулировки, которые использует производитель или продавец оборудования. Часто мы слышим следующее: «КПД до 99%», «эффективность до 100%» «эксплуатация до -50ºС» – все эти фразы – не более чем проявление маркетинговой стратегии с одновременной попыткой ввести покупателя в заблуждение. Как показал опыт эксплуатации рекуператоров в российском климате, металлические рекуператоры стабильно работают при понижении температуры до -10ºС. Дальше начинается процесс снижения КПД из-за обмерзания рекуператора. Чтобы этого не происходило, многие производители используют дополнительные источники нагрева (электрический преднагрев).
Второе, на что нужно обратить внимание, это на толщину корпуса оборудования, на материал, из которого изготовлен каркас корпуса и на наличие мостиков холода в корпусе. Опять возвращаемся к опыту использования: рассмотрим особенности корпуса толщиной 30мм. Данный корпус не выдерживает понижения уличной температуры до -5ºС и его необходимо изолировать дополнительно. Если корпус выполнен из алюминиевого каркаса, то дополнительная изоляция также станет его неотъемлемой частью. Ведь алюминий – это один большой мостик холода, «раскинувшийся» по всему периметру корпуса.
Третье: одна из частых ошибок при выборе рекуператора состоит в том, что покупатель не учитывает свободный напор вентиляторов. Он видит только волшебную цифру – 500 м³ и цену – 50 тыс. руб., а о том, что вентилятор имеет напор – 0 Па при 500 м³ покупатель узнает только после окончания ремонта дома, то есть во время эксплуатации уже установленного оборудования.
Четвертый критерий выбора заключается в наличии автоматики и в возможности подключения к ней опциональных компонентов. Автоматика позволяет значительно снизить эксплуатационные издержки и добиться максимального комфорта при работе оборудования.
Что касается производительности: основным расчетным параметром является объем воздуха, который должен поступать в помещение в течение одного часа. В соответствии с санитарными нормативами этот объем должен быть равен 60 м³ на одного взрослого человека или один крат в час от общей кубатуры обслуживаемых помещений (гостиная, кухня, спальни). При выборе рекуператора нужно смотреть не только на производительность установки, но и на напор вентиляторов, которые прокачивают вашу вентиляционную сеть по дому.
Расчет требуемой производительности лучше доверить специалистам. Ведь в случае ошибки замена рекуператора потребует ощутимых финансовых затрат.
Рассчитывая и выбирая установку, для получения более точной информации, придется читать профильную литературу и форумы, обзванивать производителей и поставщиков оборудования (тема очень обширная). Всегда лучше обратится к специалистам. А тем людям, которых этот совет не останавливает, все равно рекомендуется подтвердить правильность выбора у производителя или дистрибьютора оборудования.
Выбор рекуператора по типу конструкции
Нельзя сказать, что какой-то рекуператор хуже или лучше, у каждого типа рекуператоров есть свои сильные стороны и сферы применения. КПД роторного и пластинчатого рекуператора абсолютно одинаков, так как КПД зависит от двух параметров: от площади теплообменной поверхности рекуператора и от направления воздушного потока в рекуператоре.
Конструкция роторного рекуператора допускает частичное смешивание приточного и вытяжного потоков, так как изолятором воздушных потоков в нем является щетка. Щетка с мелкой щетиной , сама по себе, является плохим изолятором между воздушными потоками, а небольшой дисбаланс в системе приводит к еще большему перетоку отработанного воздуха в приточный канал. Также слабым звеном в роторном рекуператоре является двигатель, и ремень который крутит ротор: дополнительные движущие детали снижают общую надежность оборудования, а также повышают энергозатраты на рекуперацию. Роторный рекуператор допускается устанавливать только в одном положении, что также снижает возможность его применения в домашних условиях. Основными объектами для применения роторных рекуператоров являются торговые центры, гипермаркеты и другие общественные здания с большой площадью, где переток воздуха – только на пользу собственникам здания.
Представляем схему работы роторного рекуператора.
Пластинчатые рекуператоры, в отличие от роторных устройств, не столь массивны, но при этом просты в установке и надежны в эксплуатации. Среди пластинчатых рекуператоров особого внимания заслуживает оборудование мембранного типа. Специальная полимерная мембрана, встроенная в рекуператор, возвращает влагу из вытяжного воздуха в приточный. Одновременно она препятствует образованию конденсата, а также формированию наледи внутри устройства (во время его эксплуатации при низких температурах).
На базе пластинчатых рекуператоров можно построить многоступенчатую рекуперацию, которая позволяет избежать прямого контакта самого холодного воздушного потока (поступающего с улицы) с самым теплым (поступающим из дома). А в связке с энтальпийным рекуператором такая технология позволяет уйти от обмерзания рекуператора. Плавное понижение температуры вытяжного воздуха и плавное повышение температуры приточного воздуха внутри рекуператора делают устройство стойким даже к температурам крайнего севера. Как показывает практика, подобное оборудование успешно работает в самых суровых климатических условиях, например, Якутске.
PiterPro пользователь FORUMHOUSE
В пластинчатых теплообменниках используется разный материал. Пластиковые и металлические теплообменники – обмерзают. В мембранных теплообменниках используется тонкая пленка, которая пропускает только влагу. Теплообменников в такой установке сразу два либо три – в зависимости от модели.
КПД является одной из основных характеристик рекуператора, и на его величину, перед покупкой установки, следует обращать особое внимание.
Важно выбрать для своего дома рекуператор, обладающий чувствительной и надежной автоматикой. Ведь нет ничего хуже, чем оборудование, которое постоянно задействовано в работе и с завидной регулярностью требует к себе внимания. Современная автоматика рекуператоров открывает перед пользователями дополнительные возможности:
- раздельная настройка приточного и вытяжного вентилятора;
- управление кондиционером;
- управление увлажнителем;
- автоматизация и диспетчеризация.
А конструктивные особенности позволяют оснастить устройство дополнительными опциями и системами:
- система автоматической регулировки мощности вентиляторов – VAV-система (поддержание постоянного расхода воздуха);
- система автоматической регулировки расхода воздуха по датчику CO2 (регулирует напор воздушного потока в зависимости от содержания углекислого газа в вытяжном канале);
- таймер с несколькими событиями в день;
- водяные или электрические нагревателя воздуха;
- дополнительные воздушные заслонки;
Сюда же можно отнести систему улучшенной фильтрации.
При выборе оборудования нужно рассматривать приточно-вытяжную установку, как климатический комплекс, который будет поддерживать расход воздуха, а также температуру и влажность (при необходимости) в заданном режиме. Установка дополнительных нагревателей, охладителей, VAV клапанов, увлажнителей или осушителей уже сегодня становится жизненной необходимостью.
Шувалов Дмитрий
Если сам рекуператор не может поддерживать нужную температуру приточного воздуха, то устройство следует дооснастить нагревателем соответствующей мощности. В среднем, если расчетная температура в канале не опускается ниже +14...+15°С, то нагреватель можно не устанавливать. Мое же мнение, таково: лучше не включать нагреватель, если он не нужен, чем, когда нужен – нечего будет включать.
Вышеперечисленные системы и устройства позволяют свести к минимуму участие человека в управлении системой и улучшить качество микроклимата в доме. Современная климатическая система способна постоянно контролировать работоспособность всех узлов опционального оборудования и при необходимости предупреждать пользователя о проблемах в работе системы и об изменении микроклимата в помещении. При использовании VAV системы значительно снижаются расходы на эксплуатацию установки путем временного и/или частичного отключения отдельных помещений от вентиляционной системы.
В настоящее время существуют модели рекуператоров, которые способны подключаться к индивидуальным системам « », используя протоколы ModBus или KNX. Подобные устройства идеально подойдут для ценителей продвинутого и современного функционала.
Дополнительные критерии выбора
Выбирая рекуператор, важно обратить внимание на уровень шума, который он создает в процессе эксплуатации. Этот показатель зависит от материала, из которого изготовлен корпус устройства, от толщины корпуса, от мощности вентиляторов и от других параметров.
По типу установки рекуператоры бывают подвесными (монтируются на потолок) и напольными (устанавливаются на ровную горизонтальную поверхность или вешаются на стену). Выходы под вентканалы могут быть как с двух сторон («сквозная» компоновка) так и с одной стороны («вертикальная» компоновка). Какой рекуператор нужен именно вам – это зависит от конкретных параметров вашей вентиляционной системы и от того, где именно будет монтироваться приточно-вытяжное оборудование.
Рекомендации по установке в основном касаются помещений, в которых следует устанавливать рекуператор. В первую очередь для установки используют котельные (если речь идет о частных домовладениях). Также рекуператоры монтируют в подвалах, на чердаках и в других технических помещениях.
Если это не расходится с требованиями технической документации, то установка может быть смонтирована в любом неотапливаемом помещении, при этом разводку вентиляционных каналов, по возможности, следует монтировать в комнатах, имеющих отопление.
Вентиляционные каналы, проходящие через неотапливаемые помещения (а также вне помещений), следует делать максимально утепленными. Воздуховоды, идущие от оборудования до улицы (приточные и вытяжные), также обязательно утепляются. Еще необходимо теплоизолировать узлы прохода воздуховодов сквозь наружные стены.
Учитывая шум, который оборудование может производить во время работы, лучше всего размещать его подальше от спален и от других жилых комнат.
Что касается размещения рекуператора в квартире: лучшим местом для него будет балкон или какое-либо техническое помещение.
При отсутствии такой возможности под установку рекуператора можно отвести свободное пространство гардеробной.
Как бы там ни было, расположение установки во многом зависит от особенностей планировки квартиры или дома, от компоновки и расположения вентиляционной сети и от габаритов устройства.
Особое внимание рекомендуется уделять такому элементу, как ригель. Уже существующие ригеля могут стать большой проблемой при прокладке вентиляционной сети. Обойти данный элемент можно только через техническое помещение или встроенный шкаф, что получается далеко не всегда. Поэтому о проекте вентиляции следует задуматься еще при проектировании дома, заранее предусмотрев в ригеле наличие проходных окон. Эта же рекомендация касается узлов прохода через кровлю.
Жилые помещения можно оснастить и вытяжными и приточными каналами – одновременно, но в большинстве случаев приточных каналов бывает достаточно. Вытяжка в этом случае делается «центральная», как правило, представляя собой одну или две вытяжные точки, расположенные в коридорах.
Что касается кухонь и ванных комнат: эти помещения следует комплектовать отдельными вытяжками, которые утилизируют отработанный воздух в общедомовые вентиляционные каналы (в квартирах) или наружу (в частных домах).
Тем не менее, бывают ситуации, при которых подключение ванных комнат к вентиляционной системе с рекуператором допускается (обращаем внимание, что речь идет именно о комнатах, а не о вытяжках, расположенных в этих комнатах). Но из-за холодного российского климата при таком подключении требуется соблюсти достаточно много нюансов, что далеко не всегда представляется возможным. В любом случае с вопросом о возможности подобного подключения требуется обращаться к профильным специалистам. Самостоятельно подключать ванные комнаты к рекуператору настоятельно не рекомендуется.
Многие здания, которые строятся в настоящее время, как промышленные, так и жилые, имеют очень сложную инфраструктуру и проектируются с максимальным упором на энергосбережение. Поэтому безустановок таких систем, как систем общеобменной вентиляции воздуха, систем дымозащиты и систем кондиционирования воздуха, обойтись невозможно. Для обеспечения эффективной и продолжительной службы вентиляционных систем, необходимо качественно запроектировать и установить систему общеобменной вентиляции воздуха, систему дымозащиты и систему кондиционирования воздуха. Монтаж такого оборудования любого типа должен производиться с обязательным соблюдением определенных правил. А по техническим характеристикам она должна соответствовать объему и типу помещения, в котором будет эксплуатироваться (жилое здание, общественное, промышленное).
Большое значение имеет правильная эксплуатация систем: соблюдение сроков и правил проведения профилактических осмотров, планово-предупредительных ремонтов, а также правильная икачественная наладка вентиляционного оборудования.
На каждую систему вентиляции в Москве, принятую в эксплуатацию, составляется паспорт и эксплуатационный журнал. Паспорт составляется в двух экземплярах, один из которых хранится на предприятии, а другой в службе технадзора. В паспорт вносятся все технические характеристики системы, сведения о проведенных ремонтных работах, к нему прилагаются копии исполнительных чертежей вентиляционного оборудования. Кроме того, в паспорте отражается перечень условий эксплуатации всех узлов и деталей вентиляционных систем.
По установленному графику проводятся плановые осмотры вентиляционных систем. В ходе плановых осмотров:
- Выявляются дефекты, которые устраняются при текущем ремонте;
- Определяется техническое состояние;
- Проводятся частичная очистка и смазка отдельных узлов и деталей.
Все данные планового осмотра вентиляционных систем, в обязательном порядке указываются в журнале эксплуатации.
Также, в течении рабочей смены, дежурной эксплуатационной бригадой, предусматривается плановой межремонтное обслуживание систем вентиляции. В такое обслуживание входит:
- Пуск, регулирование и выключение вентиляционного оборудования;
- Надзор за работой вентиляционных систем;
- Контроль соответствия параметров воздушной среды и температуры приточного воздуха;
- Устранение мелких дефектов.
Пусконаладочные работы систем общеобменной вентиляции воздуха, систем дымозащиты и систем кондиционирования воздуха
Этап пусконаладочных работ является очень важным этапом, ведь от пусконаладочных работ зависит качественная работа вентиляции и кондиционирования.
При пуско-наладке, видно работу монтажной команды, и параметры, указанные в проекте, происходят проверка и сравнение показателей оборудования с показателями, указанных в проектной документации. В ходе обследования осуществляется полная проверка технического состояния смонтированного оборудования, распределение и бесперебойность устройств регулировки, установка контрольно-диагностирующих приборов, выявление ошибок при работе оборудования. Если выявляются отклонения, которые в пределах нормы, то переналадка не происходит, и объект подготавливается к сдаче заказчику, с оформлением всех документов.
Все мастера нашей компании имеют профильное образование, аттестаты по ОТ и ТБ, богатый опыт работы и имеют все необходимые документы и свидетельства.
На этапе пусконаладочных работ мы осуществляем измерение скорости потока воздуха в воздуховодах, уровень шума, апробацию качества монтажа оборудования, регулировку инженерных систем в соответствии с параметрами проекта, паспортизацию.
Пусковые испытания и регулировка систем вентиляции и кондиционирования воздуха обязательно должны производиться строительно-монтажной или специализированной пусконаладочной организацией.
Паспортизация систем
Технический документ, составленный на основании проверки рабочего состояния систем вентиляции и оборудования, проведенной при помощи аэродинамических испытаний, называется паспортизацией вентиляционной системы.
СП 73.13330.2012 «Внутренние санитарно-технические системы зданий», актуализированная редакция СНИП 3.05.01-85 «Внутренние санитарно-технические системы» регламентируют форму и содержание паспорта вентиляционной системы.
Получение паспорта вентиляционной системы, в соответствии с требованиями, вышеуказанных документа, является обязательным.
В завершении работ по монтажу заказчик получает паспорт системы вентиляции.
Паспорт необходимо получить на каждую систему вентиляцией.
Паспорт незаменим для регистрации закупленного оборудования, для правильной эксплуатации, такого оборудования, с целью достижения необходимых санитарно-гигиенических параметров воздуха.
В установленный законодательством период, данный документ предоставляется контрольно-надзорным органом. Получение данного документа – это неоспоримое доказательство в решении спорных вопросов с соответствующими инстанциями.
Получение паспорта системы вентиляции может проводиться как отдельный вид работ, состоящий из комплекса аэродинамических испытаний. Проведение таких мероприятий регламентировано следующими нормативными актами:
- СП 73.13330.2012;
- СТО НОСТРОЙ 2.24.2-2011;
- Р НОСТРОЙ 2.15.3-2011;
- ГОСТ 12.3.018-79. «Системы вентиляционные. Методы аэродинамических испытаний»;
- ГОСТ Р 53300-2009;
- СП 4425-87.«Санитарно-гигиенический контроль производственных помещений»;
- СанПиН 2.1.3.2630-10.
Создание энергоэффективного административного здания, которое будет максимально приближено к стандарту «PASSIVE HOUSE», невозможно без современной приточно-вытяжной установки (ПВУ) с рекуперацией тепла.
Под рекуперацией подразумевается процесс утилизации тепла внутреннего вытяжного воздуха с температурой t в, выбрасываемого в холодный период с высокой температурой на улицу, для нагрева приточного наружного воздуха. Процесс утилизации тепла происходит в специальных утилизаторах теплоты: пластинчатые рекуператоры, вращающиеся регенераторы, а также в теплообменных аппаратах, устанавливаемых отдельно в воздушных потоках с различной температурой (в вытяжных и приточных установках) и соединяемые промежуточным теплоносителем (гликолем, этиленгликолем).
Последний вариант наиболее актуален в случае, когда приток и вытяжка разнесены по высоте здания, например, приточная установка – в подвале, а вытяжная – в чердачном помещении, однако эффективность рекуперации таких систем будет значительно меньше (от 30 до 50% в сравнении с ПВУ в одном корпусе
Пластинчатые рекуператоры представляют собой кассету, в которой каналы приточного и вытяжного воздуха разделены между собой листами алюминия. Между приточным и вытяжным воздухом через листы алюминия происходит теплообмен. Внутренний вытяжной воздух через пластины рекуператора нагревает наружный приточный воздух. При этом процесса смешения воздуха не происходит.
В роторных рекуператорах передача тепла от вытяжного воздуха приточному осуществляется через вращающийся цилиндрический ротор, состоящий из пакета тонких металлических пластин. В процессе работы роторного рекуператора вытяжной воздух нагревает пластины, а затем эти пластины перемещаются в поток холодного наружного воздуха и нагревают его. Однако в узлах разделения потоков из-за их негерметичности происходит переток вытяжного воздуха в приточный. Процент перетока может быть от 5 до 20% в зависимости от качества оборудования.
Для достижения поставленной цели – приблизить здание ФГАУ «НИИ ЦЭПП» к пассивному, в ходе долгих обсуждений и расчетов, было принято решение установить приточно-вытяжные вентиляционные установки с рекуператором Российского производителя энергосберегающих климатических систем – компании TURKOV .
Компания TURKOV
производит ПВУ для следующих регионов:
- Для Центрального региона (оборудование с двухступенчатой рекуперацией серии ZENIT , которое стабильно работает до -25 о С, и отлично подходит для климата Центрального региона России, КПД 65-75%);
- Для Сибири (оборудование с трехступенчатой рекуперацией серии Zenit HECO стабильно работает до -35 о С, и отлично подходит для климата Сибири, однако часто применяется и в центральном регионе, КПД 80-85%);
- Для Крайнего Севера (оборудование с четырехступенчатой рекуперацией серии CrioVent стабильно работает до -45 о С, отлично подходит для экстремально холодного климата и применяется в самых суровых регионах России, КПД до 90%).
Однако в ПВУ TURKOV используется энтальпийный пластинчатый рекуператор
, в котором вместе с переносом неявного тепла из вытяжного воздуха приточному также переносится влага.
Рабочая область энтальпийного рекуператора выполнена из полимерной мембраны, которая пропускает молекулы водяного пара из вытяжного (увлажненного) воздуха и передает приточному (сухому). Смешения вытяжного и приточного потоков в рекуператоре не происходит, так как влага пропускается через мембрану посредством диффузии из-за разницы концентрации пара с двух сторон мембраны.
Размеры ячеек мембраны таковы, что пройти через нее может только водяной пар, для пыли, загрязняющих веществ, капель воды, бактерий, вирусов и запахов мембрана является непреодолимой преградой (в силу соотношения размеров «ячеек» мембраны и остальных веществ).
Энтальпийный рекуператор
по сути - пластинчатый рекуператор, где вместо алюминия используется полимерная мембрана. Так как теплопроводность пластины мембраны меньше, чем у алюминия, то требуемая площадь энтальпийного рекуператора значительно больше площади аналогичного алюминиевого рекуператора. С одной стороны это увеличивает габариты оборудования, с другой позволяет передавать большой объем влаги, и именно благодаря этому получается добиться высокой морозостойкости рекуператора и стабильной работы оборудования при сверхнизких температурах.
В зимнее время (уличная температура ниже -5С), если влажность вытяжного воздуха превышает 30 % (при температуре вытяжного воздуха 22…24 о С), в рекуператоре вместе с процессом передачи влаги в приточный воздух происходит процесс накопления влаги на пластине рекуператора. Поэтому необходимо производить периодическое отключение приточного вентилятора и высушивание гигроскопического слоя рекуператора вытяжным воздухом. Длительность, периодичность и температура, ниже которой, требуется процесс просушки, зависит от ступенчатости рекуператора, температуры и влажности внутри помещения. Наиболее часто используемые настройки просушки рекуператора приведены в таблице 1.
Таблица 1. Наиболее часто используемые настройки просушки рекуператора
Ступени рекуператора | Температура/Влажность | ||||
|
<20% | 20%-30% | 30%-35% | 35%-45% | |
2 ступени | не требуется | 3/45 мин | 3/30 мин | 4/30 мин | |
3 ступени | не требуется | 3/50 мин | 3/40 мин | 3/30 мин | |
4 ступени | не требуется | 3/50 мин | 3/40 мин |
Просушка рекуператора требуется только при установке систем увлажнения воздуха, или при работе оборудования с большими, систематичными влагопритоками.
- При стандартных параметрах внутреннего воздуха режим просушки не требуется.
В данной статье в качестве примера административного здания рассмотрено типичное пятиэтажное здание ФГАУ «НИИ ЦЭПП» после намечаемой реконструкции.
Для этого здания был определен расход приточного и вытяжного воздуха в соответствии с нормами воздухообмена в административных помещениях для каждого помещения здания .
Суммарные значения расходов приточного и вытяжного воздуха по этажам здания приведены в таблице 2.
Таблица 2. Расчетные расходы приточного/вытяжного воздуха по этажам здания
Этаж | Расход приточного воздуха, м 3 /ч | Расход вытяжного воздуха, м 3 /ч | ПВУ TURKOV |
Подвал | 1987 | 1987 | Zenit 2400 HECO SW |
1 этаж | 6517 | 6517 |
Zenit 1600 HECO SW Zenit 2400 HECO SW Zenit 3400 HECO SW |
2 этаж | 5010 | 5010 | Zenit 5000 HECO SW |
3 этаж | 6208 | 6208 |
Zenit 6000 HECO SW Zenit 350 HECO MW - 2 шт. |
4 этаж | 6957 | 6957 |
Zenit 6000 HECO SW
Zenit 350 HECO MW |
5 этаж | 4274 | 4274 |
Zenit 6000 HECO SW Zenit 350 HECO MW |
В лабораториях ПВУ работают по специальному алгоритму с компенсацией вытяжки из вытяжных шкафов, т.е при включении какого-либо вытяжного шкафа вытяжка ПВУ автоматически уменьшается на величину вытяжки шкафа. На основе расчетных расходов был произведен выбор приточно-вытяжных установок Turkov. Каждый этаж будет обслуживаться своей ПВУ Zenit HECO SW и Zenit HECO MW с трехступенчатой рекуперацией до 85 %.
Вентиляция первого этажа осуществляется ПВУ, которые установлены в подвале и на втором этаже. Вентиляция остальных этажей (кроме лабораторий на четвертом и третьем этаже) обеспечивается ПВУ, установленными на техническом этаже.
Внешний вид ПВУ установки Zenit Heco SW приведен на рисунке 6. В таблице 3 приведены технические данные для каждой ПВУ установки.
- Корпус с тепло-шумоизоляцией;
- Приточный вентилятор;
- Вытяжной вентилятор;
- Приточный фильтр;
- Вытяжной фильтр;
- 3-x ступенчатый рекуператор;
- Водяной нагреватель;
- Смесительный узел;
- Автоматика с комплектом датчиков;
- Проводной пульт управления.
Важным плюсом является возможность монтажа оборудования как вертикально, так и горизонтально под потолком, что применяется в рассматриваемом здании. А так же возможность располагать оборудование в холодных зонах (чердаках, гаражах, техпомещениях и т.д.) и на улице, что весьма актуально при реставрациях и реконструкциях зданий.
ПВУ Zenit HECO MW – небольшие ПВУ с рекуперацией тепла и влаги с водяным нагревателем и смесительным узлом в легком и универсальном корпусе из вспененного полипропилена, предназначенные для поддержания климата в небольших помещениях, квартирах, домах.
Компания TURKOV самостоятельно разработала и производит в России автоматику Monocontroller для вентиляционного оборудования. Данная автоматика используется в ПВУ Zenit Heco SW
- Контроллер управляет электронно-коммутируемыми вентиляторами по линии MODBUS, что позволяет следить за работой каждого вентилятора.
- Управляет водяными нагревателями и охладителями, для точного поддержания температуры подаваемого воздуха как в зимний, так и в летний периоды.
- Для контроля CO 2 в конференц-зале и переговорных автоматика оснащается специальными датчиками CO 2 . Оборудование будет следить за концентрацией CO 2 и автоматически изменять расход воздуха подстраиваясь под количество людей в помещении, для поддержания требуемого качества воздуха, тем самым уменьшая теплопотребление оборудования.
- Комплектная система диспетчеризации позволяет максимально просто организовать диспетчерский пункт. А система удаленного мониторинга позволит следить за оборудованием из любой точки мира.
Возможности пульта управления:
- Часы, дата;
- Три скорости вентилятора;
- Отображение состояния фильтра в реальном времени;
- Недельный таймер;
- Установка температуры приточного воздуха;
- Отображение неисправностей на дисплее.
Оценка эффективности
Для оценки эффективности установки в рассматриваемом здании приточно-вытяжных установок Zenit Heco SW с рекуперацией определим расчетные, средние и годовые нагрузки на систему вентиляции, а также расходы в рублях за холодный период, теплый период и за весь год для трех вариантов ПВУ:
- ПВУ с рекуперацией Zenit Heco SW (КПД рекуператора 85 %);
- Прямоточная ПВУ (т.е без рекуператора);
- ПВУ с КПД возврата тепла 50 %.
Нагрузка на систему вентиляции – это нагрузка на воздухонагреватель, который догревает (в холодный период) или охлаждает (в теплый период) приточный воздух после рекуператора. В прямоточной ПВУ в нагревателе нагревается воздух от начальных параметров, соответствующих параметрам наружного воздуха в холодный период, а в теплый период охлаждается. Результаты расчета расчетной нагрузки на систему вентиляции в холодный период по этажам здания приведены в таблице 3. Результаты расчета расчетной нагрузки на систему вентиляции в теплый период для всего здания приведены в таблице 4.
Таблица 3. Расчетная нагрузка на систему вентиляции в холодный период по этажам, кВт
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% |
Подвал | 3,5 | 28,9 | 14,0 |
1 этаж | 11,5 | 94,8 | 45,8 |
2 этаж | 8,8 | 72,9 | 35,2 |
3 этаж | 10,9 | 90,4 | 43,6 |
4 этаж | 12,2 | 101,3 | 48,9 |
5 этаж | 7,5 | 62,2 | 30,0 |
54,4 | 450,6 | 217,5 |
Таблица 4. Расчетная нагрузка на систему вентиляции в теплый период по этажам, кВт
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% |
20,2 | 33,1 | 31,1 |
Так как расчетные температуры наружного воздуха в холодный и теплый период – не постоянны во время отопительного периода и периода охлаждения, необходимо определить среднюю вентиляционную нагрузку при средней температуре наружного воздуха:
Результаты расчета годовой нагрузки на систему вентиляции в теплый период и холодный период для всего здания приведены в таблицах 5 и 6.
Таблица 5. Годовая нагрузка на систему вентиляции в холодный период по этажам, кВт
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% |
66105 | 655733 | 264421 | |
66,1 | 655,7 | 264,4 |
Таблица 6. Годовая нагрузка на систему вентиляции в теплый период по этажам, кВт
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% |
12362 | 20287 | 19019 | |
12,4 | 20,3 | 19,0 |
Определим расходы в рублях за год на догрев, охлаждение и работу вентиляторов.
Расход в рублях на догрев получается перемножением годовых значений вентиляционных нагрузок (в Гкал) в холодный период на стоимость 1 Гкал/час тепловой энергии от сети и на время работы ПВУ в режиме нагрева. Стоимость 1 Гкал/ч тепловой энергии от сети принимаем равной 2169 рублей.
Расходы в рублях на работу вентиляторов получены перемножением их мощности, времени работы и стоимости 1 кВт электричества. Стоимость 1 кВт∙ч электричества принимаем равной 5,57 руб.
Результаты расчетов расходов в рублях на работу ПВУ в холодный период приведены в таблице 7, а в тёплый период в таблице 8. В таблице 9 приведено сравнение всех вариантов ПВУ по всему зданию ФГАУ "НИИ ЦЭПП".
Таблица 7. Расходы в рублях за год на работу ПВУ в холодный период
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% | |||
На догрев | На вентиляторы | На догрев | На вентиляторы | На догрев | На вентиляторы | |
Суммарные затраты | 368 206 | 337 568 | 3 652 433 | 337 568 | 1 472 827 | 337 568 |
Таблица 8. Расходы в рублях за год на работу ПВУ в теплый период
Этаж | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% | |||
На охлаждение | На вентиляторы | На охлаждение | На вентиляторы | На охлаждение | На вентиляторы | |
Суммарные затраты | 68 858 | 141 968 | 112 998 | 141 968 | 105 936 | 141 968 |
Таблица 9. Сравнение всех ПВУ
Величина | ПВУ Zenit HECO SW/MW | Прямоточная ПВУ | ПВУ с рекуперацией 50% |
, кВт | 54,4 | 450,6 | 217,5 |
20,2 | 33,1 | 31,1 | |
25,7 | 255,3 | 103,0 | |
11,4 | 18,8 | 17,6 | |
66 105 | 655 733 | 264 421 | |
12 362 | 20 287 | 19 019 | |
78 468 | 676 020 | 283 440 | |
Затраты на догрев, руб | 122 539 | 1 223 178 | 493 240 |
Затраты на охлаждение, руб | 68 858 | 112 998 | 105 936 |
Затраты на вентиляторы зимой, руб | 337 568 | ||
Затраты на вентиляторы летом, руб | 141 968 | ||
Суммарные годовые затраты, руб | 670 933 | 1 815 712 | 1 078 712 |
Анализ таблицы 9 позволяет сделать однозначный вывод – приточно-вытяжные установки Zenit HECO SW и Zenit HECO MW с рекуперацией тепла и влаги фирмы Turkov очень энергоэффективные.
Суммарная годовая вентиляционная нагрузка ПВУ TURKOV меньше нагрузки в ПВУ с КПД 50% на 72%, а в сравнении с прямоточной ПВУ на 88%. ПВУ Turkov позволит сэкономить 1 млн 145 тыс.руб – в сравнении с прямоточной ПВУ или 408 тыс.руб – в сравнении с ПВУ, КПД которой 50%.
Где ещё экономия…
Основной причиной отказов применения систем с рекуперацией являются относительно высокие начальные капиталовложения, однако при более полном взгляде на затраты на застройку, такие системы не только быстро окупаются, но и позволяют уменьшить общие капиталовложения при застройке.В качестве примера возьмем наиболее массовую «типовую» застройку с применением жилых, офисных зданий и магазинов.
Среднее значение теплопотерь готовых зданий: 50 Вт/м 2 .
- Включено: Теплопотери через стены, окна, кровлю, фундамент, и т.д.
Включено:
- Вентиляцию квартир с расчетом по назначению помещений и кратности.
- Вентиляцию офисов с расчетом по количеству людей и компенсации CO2.
- Вентиляцию магазинов, коридоров, складских помещений и т.д.
- Соотношение площадей выбрано на основе нескольких существующих комплексов
Включено:
- Компенсация санузлов, ванных комнат, кухонь и т.д. Так как из данных помещений нельзя организовать втяжку в систему рекуперации, то в данный помещения организован приток, а вытяжка идет отдельными вентиляторами мимо рекуператора.
Разница между количеством приточного воздуха и количеством воздуха на компенсацию.
Именно данный объем вытяжного воздуха передает тепло приточному воздуху.
Итак, необходимо произвести застройку района стандартными зданиями с общей площадью 40000 м 2 с указанными характеристиками теплопотерь. Посмотрим на чем позволит сэкономить применение систем вентиляции с рекуперацией.
Эксплуатационные расходы
Основной целью выбора систем с рекуперацией, является снижение стоимости эксплуатации оборудования, за счет значительного сокращения требуемой тепловой мощности для нагрева приточного воздуха.
С применением приточных и вытяжных вентиляционных установок без рекуперации мы получим теплопотребление системы вентиляции одного здания 2410 кВт∙ч.
- Примем стоимость эксплуатации такой системы за 100%. Экономии при этом вообще нет – 0%.
С применением наборных приточно-вытяжных вентиляционных установок с рекуперацией тепла и средним КПД 50% мы получим теплопотребление системы вентиляции одного здания 1457 кВт∙ч.
- Стоимость эксплуатации 60%. Экономия c наборным оборудованием 40%
С применением моноблочных высокоэффективных приточно-вытяжных вентиляционных установок TURKOV с рекуперацией тепла и влаги и средним КПД 85% мы получим теплопотребление системы вентиляции одного здания 790 кВт∙ч.
- Стоимость эксплуатации 33%. Экономия с оборудованием TURKOV 67%
Как видно, системы вентиляции с высокоэффективным оборудованием имеют меньшее теплопотребление, что позволяет говорить об окупаемости оборудования в срок 3-7 лет при применении водяных нагревателей и 1-2 года с применением электрических нагревателей.
Расходы при застройке
Если производить застройку в городе, то необходимо выделение значительного количества тепловой энергии из существующей теплосети, что всегда требует значительных финансовых затрат. Чем больше тепла требуется – тем дороже будет стоимость подведения.
Застройка «в поле» зачастую не предполагает подведение тепла, обычно подводится газ и производится постройка собственной котельной или ТЭЦ. Стоимость данного сооружения соразмерена требуемой тепловой мощности: чем больше - тем дороже.
В качестве примера предположим, что построена котельная мощностью 50 МВт тепловой энергии.
Помимо вентиляции затраты на отопление типового здания площадью 40000 м 2 и теплопотерями 50 Вт/м 2 будут составлять около 2000 кВт∙ч.
С применением приточных и вытяжных вентиляционных установок без рекуперации получится построить 11 зданий.
С применением наборных приточно-вытяжных вентиляционных установок с рекуперацией тепла и средним КПД 50% удастся построить 14 зданий.
С применением моноблочных высокоэффективных приточно-вытяжных вентиляционных установок TURKOV с рекуперацией тепла и влаги и средним КПД 85% удастся построить 18 зданий.
Итоговая смета подведения большего количества тепловой энергии или постройка котельной большой мощности обходится существенно дороже, чем стоимость более энергоэффективного вентиляционного оборудования. С применением дополнительных средств снижения теплопотерь здания можно увеличить застройку без увеличения требуемой тепловой мощности. Например уменьшив теплопотери всего на 20%, до 40 Вт/м 2, построить получится уже 21 здание.
Особенности работы оборудования в северных широтах
Как правило оборудование с рекуперацией имеет ограничения по минимальной температуре уличного воздуха. Связанно это с возможностями рекуператора и ограничение составляет -25…-30 o С. Если температура будет понижаться – конденсат из вытяжного воздуха будет замерзать на рекуператоре, поэтому при сверхнизких температурах используется электрический преднагреватель или водяной преднагреватель с незамерзающей жидкостью. Например, в Якутии расчетная температура уличного воздуха -48 o С. Тогда классические системы с рекуперацией работают следующим образом:
- o С нагревается предварительным нагревателем до -25 o С (Затрачивается тепловая энергия).
- С -25 o С воздух нагревается в рекуператоре до -2,5 o С (при КПД 50%).
- С -2.5 o С воздух нагревается основным нагревателем до требуемой температуры (Затрачивается тепловая энергия).
При применении же специальной серии оборудования для крайнего севера с 4-х ступенчатой рекуперацией TURKOV CrioVent преднагрев не потребуется, так как 4 ступени, большая площадь рекуперации и возврат влаги позволяют не допускать обмерзания рекуператора. Оборудование работает седеющим образом:
- Уличный воздух с температурой -48 o С нагревается в рекуператоре до 11,5 o С (КПД 85%).
- С 11,5 o С воздух нагревается основным нагревателем до требуемой температуры. (Затрачивается тепловая энергия).
Отсутствие преднагрева и высокий КПД оборудования позволят значительно сократить теплопотребление и упростить конструктив оборудования.
Применение высокоэффективных систем рекуперации в северных широтах наиболее актуально, так как из-за низких температур уличного воздуха применение классических систем рекуперации затруднительно, а оборудование без рекуперации требует слишком большого количество тепловой энергии. Оборудование Turkov успешно работает в городах с самыми сложными климатическими условиями, в таких как: Улан-Уде, Иркутск, Енисейск, Якутск, Анадырь, Мурманск, а также во многих других городах с более мягким, в сравнении с этими городами, климатом.
Заключение
- Применение систем вентиляции с рекуперацией позволяет не только снизить эксплуатационные расходы, но в случае масштабной реконструкции или капитальной застройки случаев уменьшить начальные капиталовложения.
- Максимальной экономии можно добиться в средних и северных широтах, где оборудование работает в тяжелых условиях с продолжительными отрицательными температурами уличного воздуха.
- На примере здания ФГАУ «НИИ ЦЭПП» система вентиляции с высокоэффективным рекуператором позволит сэкономить 3 млн 33 тыс.руб в год – в сравнении с прямоточной ПВУ и 1 млн 40 тыс.руб в год – в сравнении с наборной ПВУ, КПД которой 50%.