В животных клетках среди органических веществ преобладают. Химический состав растительной и животной клеток

23.01.2020

В составе живых организмов обнаружено большинство химических элементов Периодической системы элементов Д. И. Менделеева, открытых к настоящему времени. С одной стороны, в них не содержится ни одного элемента, которого не было бы в неживой природе, а с другой стороны, их концентрации в телах неживой природы и живых организмах существенно различаются.

Эти химические элементы образуют неорганические и органические вещества. Несмотря на то, что в живых организмах преобладают неорганические вещества, именно органические вещества определяют уникальность их химического состава и феномена жизни в целом, поскольку они синтезируются преимущественно организмами в процессе жизнедеятельности и играют в реакциях важнейшую роль.

Изучением химического состава организмов и химических реакций, протекающих в них, занимается наука биохимия.

Следует отметить, что содержание химических веществ в различных клетках и тканях может существенно различаться. Например, если в животных клетках среди органических соединений преобладают белки, то в клетках растений - углеводы.

Химический элемент Земная кора Морская вода Живые организмы
O 49.2 85.8 65–75
C 0.4 0.0035 15–18
H 1.0 10.67 8–10
N 0.04 0.37 1.5–3.0
P 0.1 0.003 0.20–1.0
S 0.15 0.09 0.15–0.2
K 2.35 0.04 0.15–0.4
Ca 3.25 0.05 0.04–2.0
Cl 0.2 0.06 0.05–0.1
Mg 2.35 0.14 0.02–0.03
Na 2.4 1.14 0.02–0.03
Fe 4.2 0.00015 0.01–0.015
Zn < 0.01 0.00015 0.0003
Cu < 0.01 < 0.00001 0.0002
I < 0.01 0.000015 0.0001
F 0.1 2.07 0.0001

Макро- и микроэлементы

В живых организмах встречается около 80 химических элементов, однако только для 27 из этих элементов установлены их функции в клетке и организме. Остальные элементы присутствуют в незначительных количествах, и, по-видимому, попадают в организм с пищей, водой и воздухом. Содержание химических элементов в организме существенно различается. В зависимости от концентрации их делят на макроэлементы и микроэлементы.

Концентрация каждого из макроэлементов в организме превышает 0,01 %, а их суммарное содержание - 99 %. К макроэлементам относят кислород, углерод, водород, азот, фосфор, серу, калий, кальций, натрий, хлор, магний и железо. Первые четыре из перечисленных элементов (кислород, углерод, водород и азот) называют также органогенными , поскольку они входят в состав основных органических соединений. Фосфор и сера также являются компонентами ряда органических веществ, например белков и нуклеиновых кислот. Фосфор необходим для формирования костей и зубов.

Без оставшихся макроэлементов невозможно нормальное функционирование организма. Так, калий, натрий и хлор участвуют в процессах возбуждения клеток. Калий также необходим для работы многих ферментов и удержания воды в клетке. Кальций входит в состав клеточных стенок растений, костей, зубов и раковин моллюсков и требуется для сокращения мышечных клеток, а также для внутриклеточного движения. Магний является компонентом хлорофилла - пигмента, обеспечивающего протекание фотосинтеза. Он также принимает участие в биосинтезе белка. Железо, помимо того, что оно входит в состав гемоглобина, переносящего кислород в крови, необходимо для протекания процессов дыхания и фотосинтеза, а также для функционирования многих ферментов.

Микроэлементы содержатся в организме в концентрациях менее 0,01 %, а их суммарная концентрация в клетке не достигает и 0,1 %. К микроэлементам относятся цинк, медь, марганец, кобальт, йод, фтор и др. Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь требуется для процессов фотосинтеза и дыхания. Кобальт является компонентом витамина В12, отсутствие которого приводит к анемии. Йод необходим для синтеза гормонов щитовидной железы, обеспечивающих нормальное протекание обмена веществ, а фтор связан с формированием эмали зубов.

Как недостаток, так и избыток или нарушение обмена макро- и микроэлементов приводят к развитию различных заболеваний. В частности, недостаток кальция и фосфора вызывает рахит, нехватка азота - тяжелую белковую недостаточность, дефицит железа - анемию, а отсутствие йода - нарушение образования гормонов щитовидной железы и снижение интенсивности обмена веществ. Уменьшение поступления фтора с водой и пищей в значительной степени обусловливает нарушение обновления эмали зубов и, как следствие, предрасположенность к кариесу. Свинец токсичен почти для всех организмов. Его избыток вызывает необратимые повреждения головного мозга и центральной нервной системы, что проявляется потерей зрения и слуха, бессонницей, почечной недостаточностью, судорогами, а также может привести к параличу и такому заболеванию, как рак. Острое отравление свинцом сопровождается внезапными галлюцинациями и заканчивается комой и смертью.

Недостаток макро- и микроэлементов можно компенсировать путем увеличения их содержания в пище и питьевой воде, а также за счет приема лекарственных препаратов. Так, йод содержится в морепродуктах и йодированной соли, кальций - в яичной скорлупе и т. п.

Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химических веществ в клетке и организме человека

Неорганические вещества

Химические элементы клетки образуют различные соединения - неорганические и органические. К неорганическим веществам клетки относятся вода, минеральные соли, кислоты и др., а к органическим - белки, нуклеиновые кислоты, углеводы, липиды, АТФ, витамины и др..

Вода (Н 2 О) - наиболее распространенное неорганическое вещество клетки, обладающее уникальными физико-химическими свойствами. У нее нет ни вкуса, ни цвета, ни запаха. Плотность и вязкость всех веществ оценивается по воде. Как и многие другие вещества, вода может находиться в трех агрегатных состояниях: твердом (лед), жидком и газообразном (пар). Температура плавления воды - 0°С, температура кипения - 100°С, однако растворение в воде других веществ может изменять эти характеристики. Теплоемкость воды также достаточно велика - 4200 кДж/моль·К, что дает ей возможность принимать участие в процессах терморегуляции. В молекуле воды атомы водорода расположены под углом 105°, при этом общие электронные пары оттягиваются более электроотрицательным атомом кислорода. Это обусловливает дипольные свойства молекул воды (один их конец заряжен положительно, а другой - отрицательно) и возможность образования между молекулами воды водородных связей. Сцепление молекул воды лежит в основе явления поверхностного натяжения, капиллярности и свойств воды как универсального растворителя. Вследствие этого все вещества делятся на растворимые в воде (гидрофильные) и нерастворимые в ней (гидрофобные). Благодаря этим уникальным свойствам предопределено то, что вода стала основой жизни на Земле.

Среднее содержание воды в клетках организма неодинаково и может изменяться с возрастом. Так, у полуторамесячного эмбриона человека содержание воды в клетках достигает 97,5 %, у восьмимесячного - 83 %, у новорожденного снижается до 74 %, а у взрослого человека составляет в среднем 66 %. Однако клетки организма различаются содержанием воды. Так, в костях содержится около 20 % воды, в печени - 70 %, а в мозге - 86 %. В целом можно сказать, что концентрация воды в клетках прямо пропорциональна интенсивности обмена веществ .

Минеральные соли могут находиться в растворенном или нерастворенном состояниях. Растворимые соли диссоциируют на ионы - катионы и анионы. Наиболее важными катионами являются ионы калия и натрия, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; а также ионы кальция, который принимает участие в процессах сокращения мышечных волокон и свертывании крови; магния, входящего в состав хлорофилла; железа, входящего в состав ряда белков, в том числе гемоглобина. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рН среды. Ионы минеральных солей обеспечивают и проникновение самой воды в клетку, и ее удержание в ней. Если в среде концентрация солей ниже, чем в клетке, то вода проникает в клетку. Также ионы определяют буферные свойства цитоплазмы, т. е. ее способность поддерживать постоянство слабощелочной рН цитоплазмы, несмотря на постоянное образование в клетке кислотных и щелочных продуктов.

Нерастворимые соли (CaCO 3 , Ca 3 (PO 4) 2 и др.) входят в состав костей, зубов, раковин и панцирей одноклеточных и многоклеточных животных.

Кроме того, в организмах могут вырабатываться и другие неорганические соединения, например кислоты и оксиды. Так, обкладочные клетки желудка человека вырабатывают соляную кислоту, которая активирует пищеварительный фермент пепсин, а оксид кремния пропитывает клеточные стенки хвощей и образует панцири диатомовых водорослей. В последние годы исследуется также роль оксида азота (II) в передаче сигналов в клетках и организме.

Органические вещества

Текущая страница: 2 (всего у книги 19 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:

100% +

2. Органические вещества, входящие в состав клетки

Вспомните!

Определение жизни по Энгельсу Определение жизни по Волькенштейну Полимеры Ферменты Антитела

Антигены Полисахариды Нуклеиновые кислоты

Биологическая информация


Органические соединения составляют в среднем 20–30 % массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул – гормоны, пигменты, аминокислоты, простые сахара, нуклеотиды и т. д. Разные типы клеток содержат разные количества органических соединений. Так, в растительных клетках преобладают углеводы. Наоборот, белков больше в животной клетке, чем в растительной (40–50 % против 20–35 %).

Каждая группа органических веществ в клетке любого типа выполняет сходные функции.

Белки. Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. Это высокомолекулярные полимерные соединения, мономером которых служат аминокислоты. В организме человека встречается 5 млн типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Такое разнообразие обеспечивается сочетанием всего лишь 20 разных аминокислот, составляющих несколько сотен, а иногда и тысяч комбинаций. Например, из 20 остатков аминокислот теоретически можно составить около 2×10 18 вариантов белковых молекул, различающихся порядком чередования аминокислот, а значит, и формой, и свойствами. Молекулы белков могут быть спиралевидными, складчатыми или шарообразными (рис. 3).


Рис. 3. Схема укладки полипептидной цепи в белковой молекуле


Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная (структурная) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур.

Исключительно важное значение имеет каталитическая роль белков. Все ферменты – вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Двигательная функция живых организмов обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы: образование псевдоподий, мерцание ресничек и биение жгутиков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и др.

Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела.

Защитная функция. При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах – лейкоцитах – образуются особые белки – антитела. Они связывают и обезвреживают несвойственные организму вещества (антигены).

Белки служат и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Углеводы. Углеводы, или сахариды, – органические вещества с общей формулой С n (Н 2 O) m . У большинства углеводов число молекул воды вдвое превышает количество атомов углерода, поэтому они и были названы углеводами.

В животной клетке углеводов содержится всего 1–2 %, иногда 5 %, в растительных же клетках их содержание в некоторых случаях достигает 90 % сухой массы (клубни картофеля, семена и т. д.).

Углеводы подразделяются на моносахариды, дисахариды и полисахариды. Моносахариды – это простые сахара. Из них наиболее распространены глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1–0,12 %). Рибоза и дезоксирибоза входят в состав нуклеиновых кислот.

Соединения, содержащие два моносахаридных остатка, называют дисахаридами – это мальтоза, лактоза и сахароза. Сахароза (тростниковый сахар) наиболее распространена в растениях. В её состав входят глюкоза и фруктоза.

Сложные углеводы, образованные остатками многих моносахаридов, называют полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза.

Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток; сложный полисахарид хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается 17,6 кДж энергии. Крахмал у растений и гликоген у животных, откладываясь в клетках, служат резервом пищи и энергии.

Липиды. Нерастворимые в воде органические вещества называют липидами. Это группа соединений, отличающихся большим разнообразием.

Самые распространённые из липидов, встречающихся в природе, – нейтральные жиры. Их принято делить на жиры и масла в зависимости от того, остаются ли они твёрдыми при 20 °С (жиры) или имеют при этой температуре жидкую консистенцию (масла).

Основная функция жиров – служить энергетическим резервуаром. Калорийность липидов выше энергетической ценности углеводов. В ходе расщепления 1 г жиров до СO 2 и Н 2 O освобождается 38,9 кДж энергии. Содержание жира в клетке колеблется в пределах 5–15 % от массы сухого вещества. В клетках жировой ткани количество жира возрастает до 90 %. В организме животных, впадающих в спячку, накапливается избыток жира, у позвоночных животных жир откладывается ещё и под кожей – в так называемой подкожной клетчатке, где он служит для теплоизоляции. Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для обитателей пустынь. Так, жир, которым заполнен горб верблюда, служит в первую очередь не источником энергии (как часто ошибочно полагают), а источником воды.

Очень важную роль для живых организмов играют фосфолипиды, являющиеся компонентами мембран, т. е. выполняющие строительную функцию.

Из липидов можно отметить также воск, который используется у растений и животных в качестве водоотталкивающего покрытия. Из воска пчёлы строят соты. Широко представлены в животном и растительном мире стероиды – это желчные кислоты и их соли, половые гормоны, витамин D, холестерол, гормоны коры надпочечников и т. д. Они выполняют ряд важных биохимических и физиологических функций.

Нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Благодаря особенностям своего химического строения они хранят, переносят и передают по наследству дочерним клеткам информацию о структуре белковых молекул, которые синтезируются в каждой ткани на определённом этапе индивидуального развития. Большинство свойств и признаков клеток обусловлено белками, поэтому понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность организма.

Структуру нуклеиновых кислот установили в 1953 г. американский биолог Дж. Уотсон и английский физик Ф. Крик. Изучение её имеет исключительно важное значение для понимания механизма наследования признаков у организмов и закономерностей функционирования как отдельных клеток, так и клеточных систем – тканей и органов.

Нуклеиновые кислоты – это полимеры, построенные из огромного числа мономерных единиц, называемых нуклеотидами.

Различают два типа нуклеиновых кислот. Дезоксирибонуклеиновая кислота (ДНК) – двуцепочечный полимер с очень большой молекулярной массой. В одну молекулу могут входить 10 8 и более нуклеотидов (рис. 4). ДНК несёт в себе закодированную информацию о последовательности аминокислот в белках, синтезируемых клеткой, и обладает способностью к воспроизведению.


Рис. 4. Схема строения молекулы ДНК


Рибонуклеиновая кислота (РНК), в отличие от ДНК, бывает в большинстве случаев одноцепочечной. Существует несколько видов РНК: информационные (иРНК), транспортные (тРНК) и рибосомальные (рРНК). Они различаются по структуре, величине молекул, расположению в клетке и выполняемым функциям.

1. Назовите основные группы органических веществ, входящих в состав клетки.

2. Из каких простых органических соединений состоят белки?

3. Составьте схему «Функции белков в клетке».

4. Какие химические соединения называют углеводами?

5. Назовите основные функции углеводов. Какие клетки и почему наиболее богаты углеводами?

6. Вспомните из предыдущих курсов биологии, какую функцию выполняет глюкоза в организме человека. Какое количество глюкозы в крови является нормой? Чем опасно резкое снижение концентрации глюкозы в плазме крови?

7. Объясните, почему термины «жиры» и «липиды» не являются синонимами.

8. Какие функции выполняют липиды? В каких клетках и тканях их особенно много?

9. Откуда в организме берётся метаболическая вода?

10. Что такое нуклеиновые кислоты? Какие типы нуклеиновых кислот вы знаете? Чем отличаются РНК и ДНК?

11. Сравните химический состав живых организмов и тел неживой природы. Какие выводы можно сделать на основе этого сравнения?

12. Какие особенности строения атома углерода обусловливают его ключевую роль в формировании молекул органических веществ?

Работа с компьютером

Найдите в Интернете

Глава 3. Обмен веществ и преобразование энергии в клетке

Для поддержания жизнедеятельности клеток в них непрерывно идут процессы биологического синтеза, или биосинтеза. С помощью ферментов из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения: из аминокислот синтезируются белки, из моносахаридов – сложные углеводы. Азотистые основания включаются в состав нуклеотидов, из которых формируются нуклеиновые кислоты. Разнообразные липиды возникают путём химических превращений сравнительно простых веществ, источником которых служит остаток уксусной кислоты – ацетат. Так образуются жирные кислоты, отличающиеся друг от друга числом атомов углерода в молекуле. Соединяясь с глицерином, они образуют известные нам жиры и масла. В конечном счёте структура всех органических молекул, синтез которых осуществляется с помощью ферментов, определяется совокупностью генов данной клетки – генотипом.

Синтезированные вещества используются в процессе роста для построения клеток и их органоидов и для замены израсходованных или разрушенных молекул. Все реакции синтеза идут с поглощением энергии. В ходе реакций распада, наоборот, энергия выделяется.

3. Пластический обмен. Биосинтез белков

Вспомните!

Аминокислоты Нуклеотиды Рибосомы Генетический код

РНК ДНК


Совокупность реакций биологического синтеза называют пластическим обменом (или ассимиляцией). Название данного вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Как уже отмечалось, всё многообразие их свойств в конечном счёте определяется последовательностью аминокислот в белковой цепи. Множество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путём синтеза нуклеиновых кислот с последовательностью азотистых оснований, соответствующей последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке в молекуле ДНК соответствует комбинация из трёх нуклеотидов – триплет. Эта зависимость между триплетами оснований и аминокислотами называется генетическим кодом. В такой код входит 64 разных триплета – возможные сочетания трёх из четырёх азотистых оснований.

Некоторые аминокислоты кодируются несколькими триплетами. Такая избыточность кода повышает надёжность передачи генетической информации. Случайная замена третьего нуклеотида в этих триплетах никак не отразится на структуре синтезируемого белка. В каждой молекуле ДНК, состоящей из миллионов нуклеотидных пар, записана информация о последовательности аминокислот в сотнях различных белков. Каким образом участок молекулы ДНК, несущий информацию о структуре одного белка, отграничивается от других участков? Существуют триплеты, которые «запускают» синтез полинуклеотидной цепочки, и триплеты, которые прекращают синтез, т. е. служат «знаками препинания».

Одно из основных свойств кода – его специфичность. Один триплет всегда соответствует одной аминокислоте. Код универсален для всего живого – от микроорганизмов до человека.

Для того чтобы синтезировался белок, информация о последовательности аминокислот в его структуре должна быть доставлена к рибосомам – органоидам клетки, осуществляющим синтез белка. Для этого на одной из цепей молекулы ДНК синтезируется одноцепочечная молекула РНК, последовательность нуклеотидов которой точно соответствует (комплементарна) последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК. Так образуется информационная РНК (иРНК), которая затем перемещается в цитоплазму клетки (рис. 5).

В цитоплазме к одному из концов иРНК прикрепляются субъединицы рибосомы, и начинается синтез полипептида. Рибосома перемещается по молекуле иРНК не плавно, а прерывисто, триплет за триплетом (рис. 6).

По мере перемещения рибосомы по молекуле иРНК к полипептидной цепочке одна за другой пристраиваются аминокислоты, соответствующие триплетам иРНК. Точное соответствие аминокислоты коду триплета иРНК обеспечивается транспортной РНК. Для каждой аминокислоты существует своя тРНК, один из триплетов которой комплементарен строго определённому триплету иРНК. Точно так же каждой аминокислоте соответствует свой фермент, присоединяющий её к тРНК. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы иРНК. Молекула иРНК может использоваться для синтеза полипептидов многократно, как и рибосома. В целом процесс перевода информации, заключённой в последовательности нуклеотидов в ДНК, в последовательность аминокислот в белке показан на рисунке 5.


Рис. 5. Схема биосинтеза белка (чёрной стрелкой обозначено направление движения рибосомы)


Рис. 6. Синтез полипептидной цепи на рибосоме: А, Б, В, Г – последовательные стадии трансляции


Описание синтеза белков дано здесь очень упрощённо. На самом деле этот процесс чрезвычайно сложен и связан с участием многих ферментов и затратой большого количества энергии.

Поразительная сложность системы биосинтеза и её высокая энергоёмкость обеспечивают высокую точность и упорядоченность синтеза полипептидов.

Вопросы для повторения и задания

1. Что такое ассимиляция?

2. Составьте и заполните таблицу «Основные свойства генетического кода и их значение».

3. Объясните, почему рибосома перемещается по иРНК не плавно, а прерывисто, по триплетам.

4. Где синтезируются рибонуклеиновые кислоты?

5. В какой части клетки происходит синтез белка?

6. Обсудите в классе, почему биосинтез белка считают одной из важнейших форм пластического обмена.

7. Приведите ещё примеры биологических реакций, которые можно отнести к пластическому обмену. Объясните свой выбор.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.

Найдите в Интернете сайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.

Подготовьтесь к следующему уроку. Используя дополнительные источники информации (книги, статьи, ресурсы сети Интернет и др.), сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

4. Энергетический обмен. Способы питания

Вспомните!

Брожение Дыхание Нитрифицирующие бактерии

Фотосинтез Хемосинтез Фототрофы Хемотрофы

Митохондрии


Процессом, противоположным синтезу, является диссимиляция – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют ещё энергетическим обменом клетки.

Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. В глюкозе количество потенциальной энергии, заключённой в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. на 180 г глюкозы). При расщеплении глюкозы энергия выделяется поэтапно при участии ряда ферментов:

С 6 Н 12 O 6 + 6O 2 → 6Н 2 O + 6СO 2 + 2800 кДж.

Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается, в богатых энергией фосфатных связях аденозинтрифосфорной кислоты (АТФ). Именно АТФ обеспечивает энергией все клеточные функции: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.

Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трёх остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоёмка. Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж, а не 12 кДж энергии, как при разрыве обычных химических связей. Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии и расходовать её по мере надобности. Синтез АТФ осуществляется главным образом в специальных органоидах клетки – митохондриях (см. § 6, рис. 11). Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди– и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. При этом выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап – бескислородный, осуществляющийся в цитоплазме клеток. Он называется также анаэробным дыханием (гликолизом) или брожением. Термин «брожение» обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений. Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение).

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.

В мышцах в результате анаэробного (бескислородного) дыхания одна молекула глюкозы распадается на две молекулы молочной кислоты. В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40 % энергии, а остальная рассеивается в виде теплоты.

Третий этап энергетического обмена – стадия аэробного дыхания, или кислородного расщепления, реакции которой также катализируются ферментами. При доступе кислорода образовавшиеся в клетке во время предыдущего этапа вещества окисляются до конечных продуктов – Н 2 O и СO 2 . Это сопровождается выделением большого количества энергии и аккумуляцией её в молекулах АТФ – при окислении двух молекул молочной кислоты образуется 36 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Способы питания. В процессе питания организмы получают химические соединения, используемые в дальнейшем для всех процессов жизнедеятельности. По способу получения органических веществ, т. е. по способу питания, все организмы делятся на две группы: автотрофные и гетеротрофные.

Автотрофы – это организмы, которые способны сами синтезировать необходимые им органические вещества, получая из окружающей среды углерод в виде СO 2 , воду и минеральные соли. К ним относятся некоторые бактерии и все зелёные растения.

В зависимости от того, какой источник энергии автотрофные организмы используют для синтеза органических соединений, их делят на две группы: фототрофы и хемотрофы. Для фототрофов источником энергии служит свет, а хемотрофы используют энергию, освобождающуюся при окислительно-восстановительных реакциях.

Зелёные растения – фототрофы. При помощи содержащегося в хлоропластах хлорофилла они осуществляют фотосинтез – преобразование световой энергии в энергию химических связей. Происходит это следующим образом. Кванты света – фотоны – взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией «возбуждённое» состояние. Стремясь вернуться в исходное состояние, молекулы хлорофилла отдают эту избыточную энергию, которая частично переходит в тепловую. Другая часть избыточной энергии запасается в виде АТФ, т. е. накапливается энергия, необходимая для дальнейших реакций.

В водном растворе всегда присутствуют ионы водорода (Н +) и гидроксид-ионы (ОН −). Часть избыточной энергии возбуждённых молекул хлорофилла тратится на превращение ионов Н + в атомы водорода, которые активно соединяются со сложными органическими соединениями – переносчиками водорода. Ионы гидроксила ОН − отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:

4OН → O 2 + 2Н 2 O.

Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является фотолиз – разложение воды под влиянием света. Кроме фотолиза воды, энергия света используется в световой фазе для синтеза АТФ из АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путём накапливается энергия, необходимая для процессов связывания СO 2 . В этих реакциях участвуют молекулы АТФ и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:



Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

Некоторые бактерии, лишённые хлорофилла, тоже способны к синтезу органических соединений, при этом они используют энергию химической реакции неорганических веществ. Преобразование энергии химических реакций в химическую энергию синтезируемых органических соединений называют хемосинтезом. К группе автотрофов-хемосинтетиков (хемотрофов) относятся нитрифицирующие бактерии. Некоторые из них используют энергию окисления аммиака в азотистую кислоту, другие – энергию окисления азотистой кислоты в азотную. Известны хемосинтетики, окисляющие двухвалентное железо до трёхвалентного или сероводород до серной кислоты. Фиксируя атмосферный азот, переводя нерастворимые минералы в форму, пригодную для усвоения растениями, хемосинтезирующие бактерии играют важную роль в круговороте веществ в природе.

Организмы, не способные сами синтезировать органические вещества из неорганических, нуждаются в поступлении их из окружающей среды. Эти организмы называют гетеротрофными. К ним относят большинство бактерий, грибы и всех животных.

Вопросы для повторения и задания

1. Что такое диссимиляция?

2. Изобразите схематично этапы энергетического обмена.

3. В чём заключается роль АТФ в клетке?

4. В каких структурах клетки осуществляется синтез АТФ?

5. Сравните известные вам типы питания организмов.

6. Какие организмы называют автотрофными? На какие группы делят автотрофные организмы?

7. Почему в результате фотосинтеза у зелёных растений в атмосферу выделяется свободный кислород?

8. Объясните, почему, несмотря на то что в процессе фотосинтеза синтезируется АТФ, фотосинтез относят к пластическому обмену.

9. Что такое хемосинтез? Расскажите о значении хемосинтезирующих бактерий в природе.

10. Какие организмы называют гетеротрофными? Приведите примеры.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.

Найдите в Интернете сайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.

Подготовьтесь к следующему уроку. Используя дополнительные источники информации (книги, статьи, ресурсы сети Интернет и др.), сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул - гормонов, пигментов, АТФ и многие другие.

В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы - полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции.

Аминокислоты, азотистые основания, липиды, углеводы и т. д. поступают в клетку вместе с пищей или образуются внутри ее из предшественников. Они служат исходными продуктами для синтеза ряда полимеров, необходимых клетке.

Белки, как правило, являются мощными высокоспецифическими ферментами и регулируют обмен веществ клетки.

Нуклеиновые кислоты служат хранителями наследственной информации. Кроме того, нуклеиновые кислоты контролируют образование соответствующих белков-ферментов в нужном количестве и в нужное время.

Липиды

Липиды - так называют жиры и жироподобные вещества (липоиды). Относящиеся сюда вещества характеризуются растворимостью в органических растворителях и нерастворимостью (относительной) в воде.

Различают растительные жиры, имеющие при комнатной температуре жидкую консистенцию, и животные - твердую.

Липиды входят в состав всех плазматических мембран. Они выполняют в клетке энергетическую роль, активно участвуют в процессах метаболизма и размножения клетки.

Углеводы

В состав углеводов входят углерод, водород и кислород. Различают следующие углеводы.

  • Моносахариды , или простые углеводы, которые в зависимости от содержания атомов углерода имеют названия триозы, пентозы, гексозы и т. д. Пентозы - рибоза и дезоксирибоза - входят в состав ДНК и РНК. Гексоза – глюкоза - служит основным источником энергии в клетке. Их эмпирическую формулу можно представить в виде Cn (H2O) n.
  • Полисахариды - полимеры, мономерами которых служат моносахариды гексозы. Наиболее известными из дисахаридов (два мономера) являются сахароза и лактоза. Важнейшими полисахаридами являются крахмал и гликоген, служащие запасными веществами клеток растений и животных, а также целлюлоза - важнейший структурный компонент растительных клеток.

Растения обладают большим разнообразием углеводов, чем животные, так как способны синтезировать их на свету в процессе фотосинтеза. Важнейшие функции углеводов в клетке: энергетическая, структурная и запасающая.

Энергетическая роль состоит в том, что углеводы служат источником энергии в растительных и животных клетках; структурная - клеточная стенка у растений почти полностью состоит из полисахарида целлюлозы; запасающая - крахмал служит запасным продуктом растений. Он накапливается в процессе фотосинтеза в вегетационный период и у ряда растений откладывается в клубнях, луковицах и т. д. В животных клетках эту роль выполняет гликоген, откладывающийся преимущественно в печени.

Белки

Среди органических веществ клетки белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки. В организме человека встречается около 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения, белки построены всего из 20 различных аминокислот.

Более детально остановимся на свойствах белков. Важнейшие из них денатурация и ренатурация.

Денатурация - это утрата белковой молекулой своей структурной организации. Денатурация может быть вызвана изменением температуры, обезвоживанием, облучением рентгеновскими лучами и другими воздействиями. В начале разрушается самая слабая структура - четвертичная, затем - третичная, вторичная и при наиболее жестких условиях — первичная.

Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается и структура белка. Такой процесс называется ренатурацией. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например, антибиотиков, для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные вещества. У некоторых живых организмов обычная частичная обратная денатурация белков связана с их функциями (двигательной, сигнальной, каталитической и др.). Процесс разрушения первичной структуры белка всегда необратим и называется деструкцией.

Химические и физические свойства белков очень разнообразны: гидрофильные, гидрофобные; одни из них под действием факторов легко меняют свою структуру, другие - очень устойчивы. Белки делятся на простые - протеины, состоящие только из остатков аминокислот, и сложные - протеиды, в состав которых, кроме кислотных остатков аминокислот, входят и другие вещества небелковой природы (остатки фосфорной и нуклеиновой кислот, углеводов, липидов и др.).

Белки выполняют в организме много разнообразных функций: строительную (входят в состав различных структурных образований); защитную (специальные белки - антитела - способны связывать и обезвреживать микроорганизмы и чужеродные белки) и др. Кроме этого, белки участвуют в свертывании крови, предотвращая сильные кровотечения, выполняют регуляторную, сигнальную, двигательную, энергетическую, транспортную функции (перенесение некоторых веществ в организме).

Исключительно важное значение имеет каталитическая функция белков. Остановимся на этой функции более подробно. Термин «катализ» означает «развязывание», «освобождение». Вещества, относимые к катализаторам, ускоряют химические превращения, причем состав самих катализаторов после реакции остается таким же, каким был до реакции.

Ферменты

Все ферменты, выполняющие роль катализаторов, - вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. Каталитическую активность фермента обусловливает не вся его молекула, а только небольшой ее участок - активный центр, действие которого очень специфично. В одной молекуле фермента может быть несколько активных центров.

Одни молекулы ферментов могут состоять только из белка (например, пепсин) - однокомпонентные, или простые; другие содержат два компонента: белок (апофермент) и небольшую органическую молекулу - кофермент. Установлено, что в качестве коферментов в клетке функционируют витамины. Если учесть, что ни одна реакция в клетке не может осуществляться без участия ферментов, становится очевидным то важнейшее значение, которое имеют витамины для нормальной жизнедеятельности клетки и всего организма. Отсутствие витаминов снижает активность тех ферментов, в состав которых они входят.

Активность ферментов находится в прямой зависимости от действия целого ряда факторов: температуры, кислотности (pH среды), а также от концентрации молекул субстрата (вещества, на которое они действуют), самих ферментов и коферментов (витаминов и других веществ, входящих в состав коферментов).

Стимулировать или угнетать тот или иной ферментативный процесс может действие различных биологически активных веществ, как-то: гормоны, лекарственные препараты, стимуляторы роста растений, отравляющие вещества и др.

Витамины

Витамины - биологически активные низкомолекулярные органические вещества - участвуют в обмене веществ и преобразовании энергии в большинстве случаев как компоненты ферментов.

Суточная потребность человека в витаминах составляет миллиграммы, и даже микрограммы. Известно более 20 различных витаминов.

Источником витаминов для человека являются продукты питания, в основном растительного происхождения, в некоторых случаях — и животного (витамин D, A). Некоторые витамины синтезируются в организме человека.

Недостаток витаминов вызывает заболевание - гиповитаминоз, полное их отсутствие - авитаминоз, а излишек - гипервитаминоз.

Гормоны

Гормоны - вещества, вырабатываемые железами внутренней секреции и некоторыми нервными клетками - нейрогормонами, Гормоны способны включаться в биохимические реакции, регулируя процессы метаболизма (обмена веществ и энергии).

Характерными особенностями гормонов являются:

  1. высокая биологическая активность;
  2. высокая специфичность (гормональные сигналы в «клетки-мишени»);
  3. дистанционность действия (перенос гормонов кровью на расстояние к клеткам-мишеням);
  4. относительно небольшое время существования в организме (несколько минут или часов).

Гормоноподобные вещества (нейрогормоны) синтезируются нервными окончаниями. Нервные клетки синтезируют еще нейромедиаторы - вещества, обеспечивающие передачу импульса клеткам. Есть гормоны липоидной природы - стероиды (половые гормоны). Координирует работу системы желез внутренней секреции гипоталамус.

Индивидуальный рост растений регулируется и координируется фитогормонами, действующими как ускорители роста клеток, их деления, (стимулируют деление камбия и др.).

Алкалоиды

У растений и у некоторых других организмов выявлена еще одна группа биологически активных веществ - алкалоиды. Эти органические соединения являются ядовитыми для человека и животных. Некоторые из них оказывают наркотические действие, так как содержат никотин, морфин и др.

Алкалоиды обнаружены приблизительно у 2500 видов покрытосеменных растений, преимущественно из семейств пасленовых, лилейных, маковых, конопляных и других. По мнению ряда ученых, алкалоиды у растений выполняют защитную функцию — приспособления к защите их от поедания животными. Алкалоид колхицин используют в медицине, а также для экспериментального мутагенеза.

Нуклеиновые кислоты

Подобно белкам, нуклеиновые кислоты являются гетерополимерами. Их мономеры нуклеотиды, из которых слагаются молекулы нуклеиновых кислот, резко отличны от аминокислот. Существует 2 типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) и РНК (рибонуклеиновая кислота).

АТФ - аденозинтрифосфорная кислота, нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех молекул фосфорной кислоты.

Структура неустойчива, под влиянием ферментов переходит в АДФ – аденозиндифосфорную кислоту (отщепляется одна молекула фосфорной кислоты) с выделением 40 кДж энергии. АТФ - единый источник энергии для всех клеточных реакций. Ее превращение происходит по такой схеме:

Остановимся более подробно на значении нуклеиновых кислот, которые в клетке выполняют очень важные функции. Особенности химического строения нуклеиновых кислот обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этане индивидуального развития.

Поскольку большинство свойств в организме обусловлено белками, то понятно, что стабильность нуклеиновых кислот - важнейшее условие жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнеспособность. Изучение структуры нуклеиновых кислот, которую впервые установили американский биолог Уотсон и английский физик Крик, имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем - тканей и органов.

Исследованиями биохимиков установлено, что и биосинтез белков в живых организмах осуществляется под контролем нуклеиновых кислот.

Таким образом, нуклеиновые кислоты обеспечивают устойчивое сохранение наследственной информации и контролируют образование соответствующих им белков-ферментов, а белки-ферменты определяют основные особенности обмена веществ клетки. Все это очень важно для поддержания химической стабильности организмов, имеет решающее значение для существования жизни на Земле.

Ответы к школьным учебникам

Элементы, встречающиеся в живой природе, широко распространены и в неживой природе - атмосфере, воде, земной коре. Нет таковых элементов, которые встречались бы исключительно в живых организмах. Но соотношение химических элементов, их вклад в образование веществ, составляющих живой организм и неживое тело, резко различаются. В живом организме большая часть элементов находится в виде химических соединений - веществ, растворенных в воде. Исключительно в живых организмах содержатся органические вещества: белки, жиры, углеводы и нуклеиновые кислоты.

2. Сходен ли химический состав растительной и животной клеток?

Химический состав растительной и животной клеток подобен. Все живые организмы состоят из одних и тех же элементов, неорганических и органических соединений. Однако содержание различных элементов в разных клетках различается. В каждый тип клеток входит неодинаковое количество определенных органических молекул. В растительных клетках преобладают сложные углеводы (клетчатка, крахмал), в животных - больше белков и жиров. Каждая из групп органических веществ (белки, углеводы, жиры, нуклеиновые кислоты) в любом типе клеток выполняет свойственные ей функции (нуклеиновая кислота - хранение и передачу наследственной информации, углеводы - энергетическую и т. д.).

3. Перечислите элементы, наиболее распространенные в живых организмах.

В состав клетки входит около 80 химических элементов. Зависимо от того, в котором числе содержатся химические элементы в составе веществ, образующих живой организм, принято выделять несколько их групп. Одну группу образуют четыре элемента, составляющие около 98% массы клетки: кислород, водород, углерод и азот. Их называют макроэлементами. Это доминирующие составляющие всех органических соединений.

В другую группу входят сера и фосфор, калий и натрий, кальций и магний, марганец, железо и хлор. Они находятся в клетках в меньших количествах (десятые и сотые доли процента). Каждый из них выполняет в клетке важную функцию. К примеру, кальций и фосфор участвуют в образовании костной ткани, определяя прочность кости. Железо входит в состав гемоглобина - белка красных кровяных телец (эритроцитов), участвующего в переносе кислорода от легких к тканям.

4. Какие вещества относятся к органическим?

К органическим веществам относятся белки, нуклеиновые кислоты, жиры, углеводы, а также гормоны, пигменты, АТФ и некоторые др. Они составляют в среднем 20-30% массы клетки живого организма.

5. В чем заключается роль белков в клетке?

Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки.

Роль белков в клетке чрезвычайно велика и разнообразна. Одна из важнейших функций белков - строительная: белки участвуют в формировании мембран и органоидов не мембранного строения. Важное значение имеет и другая функция - каталитическая: определенные белки ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Двигательная функция организма обеспечивается сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы животных.

Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела.

При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах (лейкоцитах) образуются особые белки - антитела. Они связывают и обезвреживают несвойственные организму вещества. В этом выражается защитная функция белков.

Белки служат и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию.

6. Какие вещества являются основным источником энергии?

Основным источником энергии в клетках животных и растений являются углеводы. К ним относятся глюкоза, сахароза, клетчатка, крахмал и др. «Сжигая» глюкозу, организм получает необходимую энергию для проходящих в нем процессов обмена веществ. Живые организмы могут запасать углеводы в виде крахмала (у растений) и гликогена (у животных и грибов). В клубнях картофеля крахмал может составлять до 80% массы, а у животных особенно много углеводов в клетках печени и мышцах - до 5%.

Углеводы выполняют и другие функции, например опорную и защитную. Клетчатка входит в состав древесины, хитин образует наружный скелет насекомых, ракообразных и других членистоногих.

7. Охарактеризуйте роль жиров в организме.

Жиры выполняют в организме ряд функций, например служат запасным источником энергии. Они дают организму до 30% всей необходимой ему энергии. Выполняют жиры и строительную функцию, входя обязательными компонентами в состав клеточной и ядер- ной мембран. У некоторых животных жиры накапливаются в больших количествах и служат теплоизолятором, т. е. предохраняют организм от потери тепла (например, у китов толщина жирового слоя достигает 1 м).

Большое значение имеют жиры и как внутренний резерв воды: в результате расщепления 1 кг жира образуется до 1,1 кг воды. Это очень важно для животных, впадающих в зимнюю спячку, - сусликов, сурков: благодаря своим подкожным жировым запасам, они могут не пить в это время до двух месяцев. Верблюды во время переходов по пустыне обходятся без питья до двух недель - необходимую организму воду они извлекают из своих горбов - вместилищ жира.

8. Какова роль воды в клетке?

Самое распространенное неорганическое соединение в живых организмах - вода. Ее содержание колеблется в широких пределах: в клетках эмали зубов - около 10%, а в клетках развивающегося зародыша - более 90%. В среднем в многоклеточном организме вода составляет около 80% массы тела. Прежде всего, вода определяет физические свойства клетки, ее объем, упругость. Многочисленные химические реакции проходят именно в водной среде, так как вода - хороший растворитель. Да и сама вода участвует во многих химических превращениях.

Вода помогает удалению из организма ненужных и вредных веществ, образующихся в результате обмена (выделительная функция), способствует перемещению кислорода, углекислого газа и питательных веществ по организму (транспортная функция).

Вода обладает хорошей теплопроводностью и большой теплоемкостью. При изменении температуры окружающей среды вода поглощает или выделяет теплоту. Вследствие этого температура внутри клетки остается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей клетку среде (теплорегулирующая функция).

9. Назовите известные вам углеводы.

К углеводам относят следующие природные органические соединения: глюкозу, фруктозу, сахарозу, мальтозу, лактозу, хитин, крахмал, гликоген и целлюлозу.

10. Какую роль выполняют в клетке нуклеиновые кислоты?

Нуклеиновые кислоты ответственны за хранение и передачу наследственных признаков от родителей к потомству. Они входят в состав хромосом - особых структур, расположенных в клеточном ядре. Нуклеиновые кислоты находятся также в цитоплазме и ее органоидах.

11. Каков химический состав живых организмов?

Наиболее распространенные элементы в живых организмах - кислород, углерод, водород и азот. В состав живых организмов входят органические вещества (белки, жиры, углеводы, нуклеиновые кислоты) и неорганические вещества (вода, минеральные соли).

Органические соединения составляют в среднем 20-30% массы клетки живого организма. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул - гормонов, пигментов, АТФ и многие другие.

В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы - полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции.

Белки, как правило, являются мощными высокоспецифическими ферментами и регулируют обмен веществ клетки.

Нуклеиновые кислоты служат хранителями наследственной информации. Кроме того, нуклеиновые кислоты контролируют образование соответствующих белков-ферментов в нужном количестве и в нужное время.

Липиды . Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относят жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Обычно общее содержание липидов в клетке колеблется в пределах 5–15 % от массы сухого вещества.

Однако в клетках подкожной жировой клетчатки их количество возрастает до 90 %.

Широко распространены в природе нейтральные жиры, которые представляют собой соединения высокомолекулярных жирных кислот и трёхатомного спирта глицерина.


Модель (А) и схема строения (Б) молекулы нейтрального жира

В цитоплазме клеток нейтральные жиры откладываются в виде жировых капель.

Жиры являются источником энергии. При окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии (при окислении 1 г глюкозы – всего 17 кДж).

Жиры служат источником метаболической воды, из 1 г жира образуется 1,1 г воды. Используя свои жировые запасы, верблюды или впадающие в зимнюю спячку суслики могут обходиться без воды длительное время.

Жиры в основном откладываются в клетках жировой ткани. Эта ткань служит энергетическим депо организма, предохраняет его от потери тепла и выполняет защитную функцию. В полости тела между внутренними органами у позвоночных животных формируются упругие жировые прокладки, которые защищают органы от повреждений, а подкожная жировая клетчатка создаёт теплоизоляционный слой.

Воски – пластичные вещества, обладающие водоотталкивающими свойствами. У насекомых они служат материалом для постройки сот. Восковой налёт на поверхности листьев, стеблей, плодов защищает растения от механических повреждений, ультрафиолетового излучения и играет важную роль в регуляции водного баланса.

Не менее важное значение в организме имеют жироподобные вещества.

Представители этой группы – фосфолипиды – формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.

Важную роль в жизнедеятельности всех живых организмов, особенно животных, играет жироподобное вещество – холестерин . В корковом слое надпочечников, в половых железах и в плаценте из него образуются стероидные гормоны (кортикостероиды и половые гормоны). В клетках печени из холестерина синтезируются желчные кислоты, необходимые для нормального переваривания жиров.

К жироподобным веществам относят также жирорастворимые витамины А, D, E, K, обладающие высокой биологической активностью.

Углеводами называют вещества с общей формулой Сn (H2 O) m. Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также входят в состав клеток всех других организмов. В животной клетке содержится I-2% углеводов, в растительных в некоторых случаях - 85-90%.

Выделяют три группы углеводов:

  • моносахариды, или простые сахара;
  • олигосахариды- соединения, состоящие из 2-10 последовательно соединенных молекул простых Сахаров;
  • полисахариды, состоящие более чем из 10 молекул простых Сахаров или их производных.

Моносахариды , это соединения, в основе которых лежит неразветвленная углеродная цепочка, в которой при одном из атомов углерода находится карбонильная группа (С=0), а при всех остальных - по одной гидроксильной группе. В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (С3), гетрозы (С4), пентозы (С5), гексозы (С6), гептозы (С7). Примерами пентоз являются рибоза, дезоксирибоза, гексоз-глюкоза, фруктоза, галактоза.

Моносахариды хорошо растворяются в воде, они сладкие на вкус. В водном растворе моносахариды, начиная с пентоз, приобретают кольцевую форму.

Олигосахариды. При гидролизе олигосахариды образуют несколько молекул простых Сахаров. В олигосахаридах молекулы простых Сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы, например:

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар):

глюкоза + глюкоза = мальтоза;
глюкоза + галактоза - лактоза;
глюкоза + фруктоза = саxароза.

Эти сахара называют также дисахаридами .

Полисахариды . Это высокомолекулярные (до 10 000 000 Да) биополимеры, состоящие из большого числа мономеров - простых Сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисаха-риды (крахмал, целлюлоза, хитин и др.), во втором - гетеро-полисахариды (гепарин).

Полисахариды могут иметь линейную, неразветвленную структуру (целлюлоза) либо разветвленную (гликоген). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются:

  • Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями.
  • Крахмал (у растений) и гликоген (у животных, человека и грибов) являются основными запасными полисахаридами по ряду причин: будучи нерастворимыми в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что важно при длительном нахождении их в живой клетке.
  • Хитин образован молекулами pVD-глюкозы, в которой гидроксильная группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов:

Энергетическая . Глюкоза - основной источник энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания. Крахмал и гликоген составляют энергетический запас в клетках.

Структурная . Целлюлоза входит в состав клеточных оболочек растений; хитин служит структурным компонентом покровов членистоногих и клеточных стенок многих грибов. Некоторые олигосахариды - составная часть цитоплазматической мембраны клетки (в виде гликопротеинов и гликолипи-дов), образующая гликокаликс. Пентозы участвуют в синтезе нуклеиновых кислот (рибоза входит в состав РНК, дезоксирибоза - в состав ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозо-дифосфат является акцептором С02 в темновой фазе фотосинтеза).

Защитная. У животных гепарин препятствует свертыванию крови, у растений камеди и слизи, образующиеся при повреждении тканей, выполняют защитную функцию.

Похожие статьи
 
Категории
сколько стоят венки на могилу Добро пожаловать на сайт Ritual.rip, где мы предлагаем комплексные решения для организации похорон в Москве. Наша миссия - обеспечить уважительное и достойное прощание с усопшими, предлагая широкий спектр ритуальных услуг для всех нужд.
Видеоматериалы