Перевод оригинального издания:
The Theory of Everything
Печатается с разрешения Waterside Productions Inc и литературного агентства «Синопсис».
© Phoenix Books and Audio, 2006
© ООО «Издательство АСТ», 2017 (перевод на русский язык)
Введение
В этой серии лекций я постараюсь в общих чертах рассказать о наших представлениях об истории Вселенной от Большого взрыва до образования черных дыр. Первая лекция посвящена краткому обзору идей о строении Вселенной, которых придерживались в прошлом, и рассказу о том, как была построена современная картина мира. Эту часть можно назвать историей развития представлений об истории Вселенной.
Во второй лекции я опишу, как теории гравитации Ньютона и Эйнштейна привели к пониманию того, что Вселенная не может быть неизменной – она должна либо расширяться, либо сжиматься. Из этого, в свою очередь, следует вывод, что в какое-то время в интервале от 10 до 20 млрд лет назад плотность Вселенной была бесконечной. Эта точка на оси времени называется Большим взрывом. По-видимому, этот момент и был началом существования Вселенной.
В третьей лекции я расскажу о черных дырах. Они образуются, когда массивная звезда или более крупное космическое тело коллапсирует под действием собственной гравитации. Согласно общей теории относительности Эйнштейна, каждый, кто окажется достаточно глуп, чтобы угодить в черную дыру, останется там навсегда. Никто не сможет оттуда выбраться. В сингулярности истории существования любого объекта приходит конец. Однако общая теория относительности – это теория классическая, то есть в ней не учитывается квантовомеханический принцип неопределенности.
В четвертой лекции я объясню, как квантовая механика позволяет энергии ускользать из черной дыры. Черные дыры не так уж черны, «как их малюют».
В пятой лекции я расскажу о применении идей квантовой механики к решению вопросов, связанных с Большим взрывом и происхождением Вселенной. Это подведет нас к пониманию того, что пространство-время может быть конечным, но не иметь границы или края. Это напоминает поверхность Земли, но с добавлением еще двух измерений.
В шестой лекции я покажу, как на основе этого нового предположения о границе можно объяснить, почему прошлое так сильно отличается от будущего, хотя законы физики симметричны относительно времени.
Наконец, в седьмой лекции я расскажу о попытках сформулировать единую теорию, охватывающую квантовую механику, гравитацию и все остальные физические взаимодействия. Если нам это удастся, мы действительно сможем понять Вселенную и свое место в ней.
Лекция первая
Представления о Вселенной
Еще в 340 г. до н. э. Аристотель в своем трактате «О небе» сформулировал два веских довода в пользу того, что Земля имеет форму шара, а не является плоской, как тарелка. Во-первых, он понял, что лунные затмения вызваны прохождением Земли между Солнцем и Луной. Тень Земли на Луне – всегда круглая, а это возможно, только если Земля имеет сферическую форму. Если бы Земля представляла собой плоский диск, тень была бы вытянутой и имела бы форму эллипса, за исключением тех случаев, когда в момент затмения Солнце находится точно над центром диска.
Во-вторых, из опыта своих путешествий греки знали, что в южных районах Полярная звезда находится ниже над горизонтом, чем в более северных. Опираясь на разницу видимых положений Полярной звезды в Египте и Греции, Аристотель даже приводит оценку длины окружности Земли – 400 тыс. стадиев. Чему равен один стадий – точно не известно (возможно, около 180 метров). Тогда оценка Аристотеля почти в два раза превосходит значение, принятое в настоящее время.
У древних греков был еще и третий аргумент в пользу того, что Земля должна иметь форму шара: иначе почему на горизонте сначала появляются паруса приближающегося корабля и только потом становится виден его корпус? Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее. Он так считал, поскольку в силу мистических соображений был убежден, что Земля – центр Вселенной, а круговое движение – самое совершенное.
Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее.
В I веке н. э. эта идея была развита Птолемеем в целостную космологическую модель. Земля располагается в центре, ее окружают восемь сфер, несущих на себе Луну, Солнце, звезды и пять планет, известных в то время: Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты движутся по окружностям меньших радиусов, которые связаны с соответствующими сферами. Это требовалось, чтобы объяснить их достаточно сложные наблюдаемые траектории движения по небу. На внешней сфере расположены так называемые неподвижные звезды, которые сохраняют свои положения относительно друг друга, но все вместе совершают круговое движение по небу. Что находится за пределами внешней сферы – оставалось неясным, но эта часть Вселенной, несомненно, была недоступна для наблюдений.
Модель Птолемея давала возможность достаточно точно предсказывать положения небесных тел на небе. Но для этого Птолемею пришлось допустить, что иногда Луна подходит вдвое ближе к Земле, чем в другие моменты своего движения по предсказанной траектории. Это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, но, несмотря на это, его модель была принята большинством, хотя и не всеми. Она получила одобрение христианской церкви, как картина мира, согласующаяся со Священным писанием. Ведь эта модель обладала огромным преимуществом, поскольку оставляла за сферой неподвижных звезд достаточно места для рая и ада.
Старинный рисунок, на котором изображены разные космологические модели, объяснявшие движение планет. На центральной схеме представлена гелиоцентрическая (в центре находится Солнце) модель движения шести известных в то время планет, их спутников и других небесных тел, обращающихся вокруг Солнца. Со второго века доминирующей моделью стала геоцентрическая (в центре находится Земля) система Птолемея (вверху слева). На смену ей пришла гелиоцентрическая система Коперника, опубликованная в 1543 г. (внизу справа). В египетской модели (внизу слева) и модели Тихо Браге (вверху справа) предпринимались попытки сохранить представление о неподвижной Земле как центре Вселенной. Подробные сведения об орбитах планет приведены слева и справа.
Из «Иллюстрированного атласа» Иоганна Георга Хека, 1860 г.
Однако в 1514 г. польский священник Николай Коперник предложил гораздо более простую модель. Сначала, опасаясь обвинений в ереси, он опубликовал свою модель анонимно. Он считал, что в центре находится неподвижное Солнце, а Земля и планеты движутся вокруг него по круговым орбитам. К несчастью для Коперника, прошло почти сто лет, прежде чем его идеи были приняты всерьез. Тогда два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника несмотря на то, что орбиты, предсказанные на основе этой теории, несколько отличались от наблюдаемых. Конец господству теории Аристотеля-Птолемея был положен в 1609 г., когда Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.
В 1609 г. Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.
Наблюдая Юпитер, Галилей заметил, что планету сопровождают несколько небольших спутников (лун), которые обращаются вокруг нее. Это означало, что не все небесные тела должны обращаться вокруг Земли, как думали Аристотель и Птолемей. Конечно, по-прежнему можно было считать, что Земля неподвижна и находится в центре Вселенной, а спутники Юпитера движутся по крайне сложным траекториям вокруг Земли, так что создается видимость их обращения вокруг Юпитера. Однако теория Коперника была гораздо проще.
14 марта 2018 года, утром, умер известный физик и популяризатор науки Стивен Хокинг. Ученый занимался космологией и квантовой гравитацией. Мы рассказываем простым языком об основных открытиях Хокинга, которые изменили науку.
Вконтакте
Однокласники
Излучение Хокинга
Хокинг разработал теорию о том, что черные дыры «испаряются» за счет особого излучения, которое потом назвали его именем.
До этого открытия ученые считали, что черные ничего не излучают, а лишь поглощают. Он доказал, что черные дыры не совсем черные, так как излучают остаточную радиацию.
Также Хокинг делает вывод, что черные дыры существуют не вечно: они излучают все более сильный ветер и, в конце концов, исчезают в результате гигантского взрыва.
Эйнштейн так и не принял квантовую механику из-за связанного с ней элемента случайности и неопределенности. Он сказал: Бог не играет в кости. Похоже, что Эйнштейн ошибся дважды. Квантовый эффект черной дыры позволяет предположить, что Бог не только играет в кости, но и иногда бросает их туда, где их нельзя увидеть. Стивен Хокинг.
Вселенная создала себя сама
Эта теория Хокинга посвящена вопросу создания вселенной, у которой, по мнению ученого, не было начала и самого момента творения. Ученый предположил, что есть другое направление движения времени (не только вперед или назад), и выдвинул теорию о воображаемом времени, для которого вообще не существует понятий «начала» или «конец».
Хокинг был убежденным атеистом. Вот его цитата на эту тему:
Поскольку существует такая сила как гравитация, Вселенная могла и создала себя из ничего. Самопроизвольное создание — причина того, почему существует Вселенная, почему существуем мы. Нет никакой необходимости в Боге для того, чтобы "зажечь" огонь и заставить Вселенную работать. Стивен Хокинг.
Вселенная расширяется
До 20 века считалось, что Вселенная вечна и неизменна. Хокинг доступным языком доказал, что это не так.
В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется. Стивен Хокинг.
Кварки не бывают одиноки
Кварки — элементарные частицы, из которых состоят протоны и нейтроны. Хокинг доказал, что существуют только группами и никогда — по одному. Сила, которая связывает кварки, увеличивается с увеличением расстояния между ними. Если попытаться оттянуть один кварк от другого, они только с большей силой притянутся.
Теория сжатия Вселенной
Хокинг думал о том, что произойдет, когда Вселенная перестанет расширяться и начнет сжиматься. Пойдет ли время в другую сторону?
Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной. Стивен Хокинг.
Этот процесс показан в фильме «Господин Никто» с Джаредом Лето в главной роли.
Попытки создать математическую модель этой теории провалились, но она остается популярной. У Вселенной только два варианта: или бесконечное расширение, или сжатие.
Существует огромное число Вселенных
Речь идет об М-теории, которую Хокинг дорабатывал с Леонардом Млодиновым. М-теория — это ответвление теории струн. Согласно этой теории, на самом мельчайшем уровне все частицы состоят из бран — многомерных мембран, свойства которых могут объяснить абсолютно все процессы, происходящие в нашей Вселенной.
В книге, изданной в 1988 году, Хокинг рассказывает о том, над чем рано или поздно наверняка задумывался каждый из нас: как появилась Вселенная, какова природа пространства и времени, что из себя представляют чёрные дыры и как родилась теория суперструн. Автор пишет и о некоторых математических проблемах, но приводит всего лишь одну формулу - E = mc².
За 20 лет было продано более 10 миллионов экземпляров этой книги.
Спустя 17 лет после выхода «Краткой истории» и американский физик Леонард Млодинов написали продолжение. Они использовали новейшие данные, полученные астрономическими лабораториями. Авторы рассказывают, что такое чёрная материя и чёрная энергия, возможны ли путешествия во времени, каково прошлое и будущее Вселенной, и ещё глубже погружаются в теорию струн.
Это тоже история Вселенной, дополненная потрясающими иллюстрациями - снимками космического телескопа «Хаббл». Хокинг остроумно и доступно рассказывает о Большом взрыве и непрекращающихся поисках теории всего - единой теории поля, «святого Грааля современной физики». Её появление, по версии автора, будет означать триумф человеческого разума.
Книга, написанная в 2006 году, объединяет семь лекций Хокинга.
Забавная история о космических приключениях, в которые попадают мальчик Джордж и его соседи, учёный Эрик и его дочь Анна. Авторы очень интересно и доступно рассказывают о квазарах, астероидах, чёрных дырах, параллельных и галактиках.
Книга, основанная на лекции Хокинга в Калифорнийском университете, вышла в 1980 году. Но позже она была дополнена и в 2017 году переведена на русский язык. Это сборник, в который вошли 13 эссе учёного и его развёрнутое интервью.
Темы затрагиваются очень интересные. Например, как чёрные дыры могут дать жизнь молодым вселенным.
Совместно с Леонардом Млодиновым Хокинг поёт оду науке. Он утверждает, что «невозможно доказать несуществование Бога, но наука делает его необязательным». А потому Большой взрыв может быть следствием законов и ничего больше.
Книга, которая описывает суть М-теории, объединяющей фундаментальные взаимодействия, вышла в 2010 году и за несколько дней стала бестселлером.
Автобиографическую книгу Хокинг написал лишь в 2013 году. Причина проста - он считал, что популяризировать науку важнее, чем рассказывать о себе. Но чем громче звучало его имя, тем больше находилось желающих узнать о Хокинге больше. И он решился рассказать о своей болезни, семье, науке.
В этой книге учёный ответил даже на самые неудобные и личные вопросы.
Перевод оригинального издания:
The Theory of Everything
Печатается с разрешения Waterside Productions Inc и литературного агентства «Синопсис».
© Phoenix Books and Audio, 2006
© ООО «Издательство АСТ», 2017 (перевод на русский язык)
Введение
В этой серии лекций я постараюсь в общих чертах рассказать о наших представлениях об истории Вселенной от Большого взрыва до образования черных дыр. Первая лекция посвящена краткому обзору идей о строении Вселенной, которых придерживались в прошлом, и рассказу о том, как была построена современная картина мира. Эту часть можно назвать историей развития представлений об истории Вселенной.
Во второй лекции я опишу, как теории гравитации Ньютона и Эйнштейна привели к пониманию того, что Вселенная не может быть неизменной – она должна либо расширяться, либо сжиматься. Из этого, в свою очередь, следует вывод, что в какое-то время в интервале от 10 до 20 млрд лет назад плотность Вселенной была бесконечной. Эта точка на оси времени называется Большим взрывом. По-видимому, этот момент и был началом существования Вселенной.
В третьей лекции я расскажу о черных дырах. Они образуются, когда массивная звезда или более крупное космическое тело коллапсирует под действием собственной гравитации. Согласно общей теории относительности Эйнштейна, каждый, кто окажется достаточно глуп, чтобы угодить в черную дыру, останется там навсегда. Никто не сможет оттуда выбраться. В сингулярности истории существования любого объекта приходит конец. Однако общая теория относительности – это теория классическая, то есть в ней не учитывается квантовомеханический принцип неопределенности.
В четвертой лекции я объясню, как квантовая механика позволяет энергии ускользать из черной дыры. Черные дыры не так уж черны, «как их малюют».
В пятой лекции я расскажу о применении идей квантовой механики к решению вопросов, связанных с Большим взрывом и происхождением Вселенной. Это подведет нас к пониманию того, что пространство-время может быть конечным, но не иметь границы или края. Это напоминает поверхность Земли, но с добавлением еще двух измерений.
В шестой лекции я покажу, как на основе этого нового предположения о границе можно объяснить, почему прошлое так сильно отличается от будущего, хотя законы физики симметричны относительно времени.
Наконец, в седьмой лекции я расскажу о попытках сформулировать единую теорию, охватывающую квантовую механику, гравитацию и все остальные физические взаимодействия. Если нам это удастся, мы действительно сможем понять Вселенную и свое место в ней.
Лекция первая
Представления о Вселенной
Еще в 340 г. до н. э. Аристотель в своем трактате «О небе» сформулировал два веских довода в пользу того, что Земля имеет форму шара, а не является плоской, как тарелка. Во-первых, он понял, что лунные затмения вызваны прохождением Земли между Солнцем и Луной.
Тень Земли на Луне – всегда круглая, а это возможно, только если Земля имеет сферическую форму. Если бы Земля представляла собой плоский диск, тень была бы вытянутой и имела бы форму эллипса, за исключением тех случаев, когда в момент затмения Солнце находится точно над центром диска.
Во-вторых, из опыта своих путешествий греки знали, что в южных районах Полярная звезда находится ниже над горизонтом, чем в более северных. Опираясь на разницу видимых положений Полярной звезды в Египте и Греции, Аристотель даже приводит оценку длины окружности Земли – 400 тыс. стадиев. Чему равен один стадий – точно не известно (возможно, около 180 метров). Тогда оценка Аристотеля почти в два раза превосходит значение, принятое в настоящее время.
У древних греков был еще и третий аргумент в пользу того, что Земля должна иметь форму шара: иначе почему на горизонте сначала появляются паруса приближающегося корабля и только потом становится виден его корпус? Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее. Он так считал, поскольку в силу мистических соображений был убежден, что Земля – центр Вселенной, а круговое движение – самое совершенное.
Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее.
В I веке н. э. эта идея была развита Птолемеем в целостную космологическую модель. Земля располагается в центре, ее окружают восемь сфер, несущих на себе Луну, Солнце, звезды и пять планет, известных в то время: Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты движутся по окружностям меньших радиусов, которые связаны с соответствующими сферами. Это требовалось, чтобы объяснить их достаточно сложные наблюдаемые траектории движения по небу. На внешней сфере расположены так называемые неподвижные звезды, которые сохраняют свои положения относительно друг друга, но все вместе совершают круговое движение по небу. Что находится за пределами внешней сферы – оставалось неясным, но эта часть Вселенной, несомненно, была недоступна для наблюдений.
Модель Птолемея давала возможность достаточно точно предсказывать положения небесных тел на небе. Но для этого Птолемею пришлось допустить, что иногда Луна подходит вдвое ближе к Земле, чем в другие моменты своего движения по предсказанной траектории. Это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, но, несмотря на это, его модель была принята большинством, хотя и не всеми. Она получила одобрение христианской церкви, как картина мира, согласующаяся со Священным писанием. Ведь эта модель обладала огромным преимуществом, поскольку оставляла за сферой неподвижных звезд достаточно места для рая и ада.
Старинный рисунок, на котором изображены разные космологические модели, объяснявшие движение планет. На центральной схеме представлена гелиоцентрическая (в центре находится Солнце) модель движения шести известных в то время планет, их спутников и других небесных тел, обращающихся вокруг Солнца. Со второго века доминирующей моделью стала геоцентрическая (в центре находится Земля) система Птолемея (вверху слева). На смену ей пришла гелиоцентрическая система Коперника, опубликованная в 1543 г. (внизу справа). В египетской модели (внизу слева) и модели Тихо Браге (вверху справа) предпринимались попытки сохранить представление о неподвижной Земле как центре Вселенной. Подробные сведения об орбитах планет приведены слева и справа.
Из «Иллюстрированного атласа» Иоганна Георга Хека, 1860 г.
Однако в 1514 г. польский священник Николай Коперник предложил гораздо более простую модель. Сначала, опасаясь обвинений в ереси, он опубликовал свою модель анонимно. Он считал, что в центре находится неподвижное Солнце, а Земля и планеты движутся вокруг него по круговым орбитам. К несчастью для Коперника, прошло почти сто лет, прежде чем его идеи были приняты всерьез. Тогда два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника несмотря на то, что орбиты, предсказанные на основе этой теории, несколько отличались от наблюдаемых. Конец господству теории Аристотеля-Птолемея был положен в 1609 г., когда Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.
В 1609 г. Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.
Наблюдая Юпитер, Галилей заметил, что планету сопровождают несколько небольших спутников (лун), которые обращаются вокруг нее. Это означало, что не все небесные тела должны обращаться вокруг Земли, как думали Аристотель и Птолемей. Конечно, по-прежнему можно было считать, что Земля неподвижна и находится в центре Вселенной, а спутники Юпитера движутся по крайне сложным траекториям вокруг Земли, так что создается видимость их обращения вокруг Юпитера. Однако теория Коперника была гораздо проще.
В это же время Кеплер развил теорию Коперника, предположив, что планеты движутся не по круговым орбитам, а по эллиптическим. Теперь предсказания теории окончательно совпали с наблюдениями. Что касается Кеплера, эллиптические орбиты были лишь искусственной гипотезой, причем весьма досадной, поскольку эллипс считался менее совершенной фигурой, чем круг. Обнаружив (почти случайно), что эллиптические орбиты хорошо соответствуют наблюдениям, он не мог согласовать это со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил.
Объяснение было найдено гораздо позднее, в 1687 г., когда Ньютон опубликовал свой труд «Математические начала натуральной философии» . Это, возможно, самый важный из когда-либо опубликованных трудов по физике. В нем Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения. Кроме того, он сформулировал закон всемирного тяготения. Этот закон гласит, что все тела во Вселенной притягиваются друг к другу с силой, которая тем больше, чем больше массы тел и чем ближе друг к другу они расположены. Это та же сила, которая заставляет объекты падать на землю. История с упавшим на Ньютона яблоком почти наверняка является вымышленной. Сам Ньютон упоминал лишь о том, что идея гравитации пришла ему в голову, когда он пребывал в созерцательном настроении и заметил падение яблока.
Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения.
Затем Ньютон показал, что, согласно его закону, гравитация заставляет Луну двигаться по эллиптической орбите вокруг Земли, а Землю и другие планеты – следовать по эллиптическим траекториям вокруг Солнца. Коперниканская модель избавилась от небесных сфер Птолемея, а заодно и от представлений о том, что Вселенная имеет естественную границу. Так называемые неподвижные звезды не меняют свои видимые взаимные положения в процессе движения Земли вокруг Солнца. Поэтому естественно было предположить, что это такие же объекты, как наше Солнце, но расположенные гораздо дальше. Это рождало вопросы. Ньютон понимал, что, согласно его теории гравитации, звезды должны притягиваться друг к другу. То есть они не могут оставаться абсолютно неподвижными. Не упадут ли они все вместе в одну точку?
В письме, написанном в 1691 г. Ричарду Бентли, другому выдающемуся мыслителю того времени, Ньютон утверждал, что такое действительно случилось бы, будь число звезд конечным. С другой стороны, если в бесконечном пространстве более-менее равномерно распределено бесконечное число звезд, этого не произойдет, поскольку нет никакой центральной точки, в которую они могли бы упасть. Этот аргумент – пример ловушки, в которую можно угодить, рассуждая о бесконечности.
В бесконечной Вселенной каждая точка может считаться центром, поскольку по любую сторону от нее находится бесконечное число звезд. Как стало ясно намного позднее, правильный подход заключается в том, чтобы рассматривать конечную область, в которой все звезды «падают» друг на друга. Возникает вопрос: что изменится, если добавить в рассмотрение другие звезды, практически равномерно распределенные за пределами этой области? По закону Ньютона, добавление звезд никак не повлияет на исходные звезды – они будут приближаться друг к другу с прежней скоростью. Мы можем добавить сколько угодно звезд, но коллапса не избежать. Теперь мы знаем, что невозможно построить модель бесконечной стационарной Вселенной, в которой гравитация всегда связана с притяжением.
Что интересно, до XX века общий образ мыслей был таков, что никто не предполагал, что Вселенная может расширяться или сжиматься. Считалось, что либо Вселенная существовала всегда в неизменном виде, либо была создана в определенный момент в прошлом примерно такой, какой мы видим ее сегодня. Отчасти это объясняется склонностью людей верить в вечные истины, а также находить утешение в мысли, что, хотя мы стареем и умираем, Вселенная всегда остается неизменной.
До XX века никто не предполагал, что Вселенная может расширяться или сжиматься.
Даже те, кто понимал, что в соответствии с теорией гравитации Ньютона Вселенная не может быть стационарной, не решались предположить, что она может расширяться. Вместо этого они пытались подправить теорию, приписывая силе гравитации свойство отталкивания на очень больших расстояниях. Это почти не сказывалось на прогнозах движения планет, но позволяло бесконечному числу звезд находиться в равновесии, поскольку силы притяжения между близко расположенными звездами уравновешивались бы силами отталкивания между далекими.
Когда-то люди считали, что бесконечное число звезд может находиться в равновесии, поскольку силы притяжения между близкими звездами уравновешиваются силами отталкивания между далекими. Однако сегодня мы понимаем, что такое равновесие было бы неустойчивым. Скопление Квинтоль, одно из крупнейших молодых звездных скоплений в нашей Галактике Млечный Путь, разрушится всего через несколько миллионов лет под действием гравитационных приливных сил в ядре Галактики. Но в течение короткого периода своего существования оно сияет ярче всех остальных звездных скоплений нашей Галактики.
Однако сегодня мы понимаем, что такое равновесие не могло быть устойчивым. Если звезды в некоторой области хотя бы немного приблизятся друг к другу, притяжение между ними станет сильнее и будет преобладать над отталкиванием. Это означает, что звезды продолжат сближаться. С другой стороны, если звезды слегка отдалятся друг от друга, возобладают силы отталкивания и звезды будут удаляться друг от друга.
Еще одно возражение против идеи бесконечной стационарной Вселенной обычно приписывают немецкому философу Генриху Ольберсу. На самом деле многие современники Ньютона обращали внимание на эту проблему, и статья Ольберса, опубликованная в 1823 г., не была первой из работ, содержащих убедительные рассуждения на эту тему. Однако она первой получила широкую известность. Трудность заключается в том, что в бесконечной стационарной Вселенной почти любой луч зрения должен упираться в поверхность звезды. Из этого следует, что все небо должно светиться так же ярко, как Солнце, даже ночью. Тогда Ольберс высказал мысль, что свет далеких звезд ослабляется из-за поглощения веществом, находящимся на его пути. Однако в таком случае межзвездное вещество со временем должно было бы нагреться и засиять так же ярко, как звезды.
Звезды в бесконечной стационарной Вселенной .
В бесконечной стационарной Вселенной почти любой луч зрения должен упираться в поверхность какой-нибудь звезды.
Избежать вывода о том, что ночное небо должно сиять так же ярко, как поверхность Солнца, можно только в том случае, если предположить, что звезды не светят вечно, а зажглись в какой-то определенный момент в прошлом. В таком случае, возможно, межзвездное вещество еще не успело нагреться или свет самых далеких звезд пока нас не достиг. И это подводит нас к вопросу о том, что заставило звезды зажечься.
Зарождение Вселенной
Разумеется, люди издревле размышляли о зарождении Вселенной. Во многих древних учениях о Вселенной, относящихся к еврейской, христианской или мусульманской традиции, Вселенная возникла в определенный конечный момент времени не так давно в прошлом. Одним из доводов в пользу такого начала было убеждение, что для существования Вселенной необходима первопричина.
Еще один довод выдвинул Блаженный Августин в своем труде «О граде Божьем» . Он обратил внимание на развитие цивилизации и на то, что мы помним, кто совершил определенное деяние или создал какое-то изобретение. Значит, человечество, а также, возможно, и Вселенная существуют не так давно. Иначе мы бы ушли по пути прогресса гораздо дальше.
Опираясь на Книгу Бытия, Блаженный Августин относил сотворение Вселенной примерно к 5000 г. до н. э. Что любопытно, эта дата не так уж далека от окончания последнего ледникового периода (около 10 000 лет до н. э.), когда зародилась цивилизация. С другой стороны, Аристотелю и большинству древнегреческих философов не нравилась идея сотворения мира, поскольку она требовала слишком большого божественного вмешательства. Поэтому они верили, что человечество и мир вокруг нас существовали и, возможно, будут существовать вечно. Они тоже обдумывали упомянутый выше аргумент о прогрессе цивилизации и отвечали на него идеями о периодически происходящих наводнениях и других стихийных бедствиях, которые отбрасывают человечество к началу цивилизации.
В те времена, когда большинство людей верили в стационарную и неизменную Вселенную, вопрос о том, имеет ли она начало, относился к области метафизики или теологии. Каждый мог объяснять наблюдаемые явления по-своему. Кто-то верил, что Вселенная существует вечно, другие полагали, что она была приведена в движение в определенный момент времени, причем таким образом, что создается впечатление, будто она существовала всегда. Но в 1929 г. Эдвин Хаббл совершил революционное открытие, обнаружив, что в каком бы направлении мы ни посмотрели, далекие звезды стремительно удаляются от нас. Другими словами, Вселенная расширяется. Это означает, что в прошлом небесные тела находились ближе друг к другу. На самом деле складывалось впечатление, что примерно 10–20 млрд лет назад все они находились в одной точке пространства.
Это открытие окончательно перевело вопрос о зарождении Вселенной в сферу науки. Наблюдения Хаббла свидетельствовали о том, что был момент, называемый Большим взрывом, когда Вселенная была бесконечно мала и, значит, не могла повлиять на то, что происходит в настоящее время. А тем, что не имеет никаких наблюдательных последствий, можно пренебречь.
Можно сказать, что время началось в момент Большого взрыва – то есть мы не можем определить, что было до него. Необходимо подчеркнуть, что этот момент начала времени существенно отличается от всего, что рассматривалось прежде. В неизменной Вселенной начало времени – это нечто, что должно быть установлено извне. Нет никакой физической необходимости существования такого начала. Можно представить, что Бог сотворил Вселенную практически в любой момент времени в прошлом. С другой стороны, если Вселенная расширяется, то могут быть физические причины существования момента начала. Кто-то может по-прежнему верить, что Бог создал Вселенную в момент Большого взрыва. Он даже мог создать ее позднее, но таким образом, чтобы казалось, будто произошел Большой взрыв. Однако бессмысленно было бы предполагать, что Вселенная создана до Большого взрыва. Расширяющаяся Вселенная не исключает возможность существования Творца, но накладывает ограничения на время, когда он мог выполнять свою работу.
Лекция вторая
Расширяющаяся Вселенная
Наше Солнце и ближайшие к нему звезды являются частью обширного звездного скопления – галактики Млечный Путь. Долгое время люди думали, что это и есть вся Вселенная. Только в 1924 г. американский астроном Эдвин Хаббл показал, что наша Галактика – не единственная во Вселенной. На самом деле существует много других галактик, разделенных огромными участками пустого пространства. Чтобы доказать это, ему потребовалось измерить расстояния до этих галактик. Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца. Но другие галактики находятся так далеко, что в отличие от ближайших звезд кажутся неподвижными. Поэтому Хабблу пришлось использовать косвенные методы измерения расстояний.
Видимый блеск звезды зависит от двух факторов – ее светимости и расстояния от нас. Для ближайших звезд мы можем измерить видимый блеск и расстояние, что позволяет рассчитать их светимость. И наоборот, если бы мы знали светимость звезд из других галактик, мы могли бы вычислить расстояния до них, измерив их видимый блеск. Хаббл утверждал, что существуют определенные типы звезд, всегда имеющие одинаковую светимость (если удается ее измерить благодаря тому, что эти звезды находятся достаточно близко от нас). Следовательно, если мы найдем такие звезды в другой галактике, мы можем предположить, что они имеют такую же светимость. Таким образом, мы могли бы вычислить расстояние до этой галактики. Если расстояния, рассчитанные для множества звезд из одной и той же галактики, совпадают, то мы можем быть вполне уверены в полученных результатах. Таким способом Эдвин Хаббл вычислил расстояния до девяти разных галактик.
Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца.
В настоящее время мы знаем, что наша Галактика – лишь одна из сотен миллиардов галактик, наблюдаемых с помощью современных телескопов и состоящих из сотен миллиардов звезд. Мы живем в медленно вращающейся Галактике размером около ста тысяч световых лет; звезды в ее спиральных рукавах обращаются вокруг ее центра с периодом около ста миллионов лет. Наше Солнце – самая обычная желтая звезда средних размеров, расположенная близ внешнего края одного из спиральных рукавов. Несомненно, мы продвинулись далеко вперед со времен Аристотеля и Птолемея, когда Земля считалась центром Вселенной.
В галактике NGC 4214, находящейся на расстоянии около 13 млн световых лет от Земли, идет процесс образования скоплений новых звезд из межзвездного газа и пыли. На этом снимке, полученном на телескопе «Хаббл», мы видим этапы образования и эволюции звезд и звездных скоплений. Самые молодые из этих звездных скоплений расположены в правом нижнем углу снимка, где они выглядят, как несколько ярких сгустков светящегося газа.
Знаменитый физик всю жизнь старался "подружить" теорию гравитации и квантовую теорию, мечтал о полетах в космос и напоминал землянам о неизбежной космической эмиграции
Москва. 14 марта. сайт - В среду, 14 марта, стало известно, что в возрасте 76 лет один из наиболее известных физиков-теоретиков современности и популяризатор науки Стивен Хокинг, всю жизнь старавшийся примирить теорию гравитации и квантовую теорию.
Секрет популярности Хокинга - в умной эксцентричности, неспособности замыкаться в каких-либо рамках, в открытости людям, с которыми он старался вести диалог на равных, говоря простым языком о сложных вещах.
Популяризированию науки способствовал его активный образ жизни: ученый много путешествовал, не раз становился героем мультфильмов в "Симпсонах" и "Футураме", в которых озвучивал своего персонажа, снялся даже в кино в роли самого себя - в одной из серий сериала "Звездный путь: Следующее поколение" и в эпизоде комедийного сериала "Теория Большого взрыва", ученый был сторонником ядерного разоружения, боролся с изменениями климата.
Немецкий популяризатор науки Хуберт Мания в своей книге "Стивен Хокинг" так описывает британского физика: "Почти совершенное воплощение свободного духа, огромного интеллекта, человека, который мужественно преодолевает физическую немощь, отдавая все силы на расшифровку "божественного замысла".
В 20 лет у Хокинга стали проявляться признаки хронического заболевания центральной нервной системы, которое в дальнейшем привело к полному параличу. Однако тяжелое заболевание, почти на 40 лет приковавшее ученого к инвалидному креслу, не помешало ему показать миру все многообразие Вселенной. Сам ученый мечтал отправиться в космос и в последние годы жизни он неоднократно предупреждал, что человечество обречено, а Земля погибнет от удара астероида, высоких температур или перенаселенности, и что это лишь вопрос времени.
Исследовательскую деятельность Хокинг начал еще в годы учебы в Кембридже, преподавал теорию гравитации, гравитационную физику, работал в Институте астрономии, на кафедре прикладной математики и теоретической физики Кембриджа. В Калифорнийском технологическом институте, куда его пригласили в 1974 году, он занимался, в частности, вопросами общей теории относительности. В 1979 физик получил должность Лукасовского профессора Кембриджского университета и занимал ее до 2009 года.
Более 20 лет Хокинг руководил группой, занимающейся проблемами вокруг теории относительности и вопросами гравитации. В 2007 году он основал при Кембриджском университете Центр теоретической космологии.
"Излучение Хокинга"
Профессор Кембриджского университета Хокинг известен, в частности, теоретическим предсказанием излучения черных дыр, из-за которого они постепенно испаряются, теряя массу, а значит, и информацию об упавших в нее предметах. Открытие получило название "излучение Хокинга". Оно в значительной степени изменило современные космологические представления. Согласно общепринятым представлениям, внешний наблюдатель не может заглянуть внутрь черной дыры и получить какую-либо информацию об объектах, находящихся за горизонтом событий. Однако теоретически излучение Хокинга позволяет заглянуть внутрь черной дыры, то есть определить ее внутреннюю топологию.
Излучение Хокинга не является результатом движения зарядов. Оно возникает при изменении свойств вакуума в результате формирования черной дыры. Если заряды и массы рождают только электромагнитные и гравитационные волны, то в результате квантового излучения Хокинга могут появиться электроны, позитроны, протоны и другие частицы.
В излучении Хокинга черная дыра будет излучать как обычный нагретый до какой-то температуры источник. При этом температура будет обратно пропорциональна ее массе: чем больше дыра, тем она "холоднее". Когда черная дыра излучает, ее масса уменьшается, а температура растет, это следует из соответствия энергии и массы по формуле E=mc2. При этом все характеристики частиц, кроме массы и заряда, излучаются с одинаковой вероятностью.
Парадокс потери информации
Этот парадокс формулируется на стыке между квантовой теорией поля и общей теории относительности, поэтому его разрешение может помочь в формулировке теории квантовой гравитации.
Одна из актуальных проблем в современной теоретической физике - исчезновение информации в черной дыре. Физик предложил свое объяснение. По его мнению, информация не исчезает и не оказывается записана где-то внутри черной дыры - вместо этого она хранится на поверхности горизонта событий сверхмассивного объекта в форме голограммы. Горизонт событий - поверхность черной дыры, из пределов которой свет не может вылететь наружу. Если источник излучения находится прямо на горизонте, то создаваемое им поле видно не меняющимся во времени, то есть излучения нет. Согласно голографическому принципу, если известно все о динамике на горизонте, то можно восстановить и динамику внутри черной дыры.
Хокинг в своей статье описал, как каждый акт излучения отражается на горизонте событий черной дыры. По его мнению, используя голографический принцип, можно описать детали процесса формирования излучения черных дыр. Хокинг считает, что если что-то произошло внутри или снаружи черной дыры, то происходит какой-то акт на горизонте.
В сентябре 2015 года Хокинг сообщил о новой идее, которая, по его мнению, поможет разрешить 40-летний парадокс потери информации в черных дырах. Ученый сослался в своем сообщении на некоторые специальные свойства пространства. Если ими правильно воспользоваться, то можно указать, как и в каком виде информация покидает черную дыру. В работе утверждается, что у излучения Хокинга будет бесконечно много характеристик, а не только температурное распределение, зависящее от массы, заряда и момента вращения, и при помощи этих характеристик можно будет полностью охарактеризовать состояние черной дыры.
Пророк конца света
Одно из наиболее популярных произведений Хокинга – "Краткая история времени". Вышедшая в 1988 году с подзаголовком "От большого взрыва до черных дыр" книга сразу стала бестселлером. Ее тираж составил 10 млн копий, переведена на 40 языков. Позже Хокинг написал еще две книги: "Черные дыры и молодые вселенные" (1993 год) и "Мир в ореховой скорлупке" (2001 год). В 2005 году опубликована "Кратчайшая история времени" - новое издание бестселлера 1988 года.
Хокинг доступным языком попытался опровергнуть постулат о неизменности Вселенной. "В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется", - писал он.
"Умирающая звезда, сжимаясь под действием собственной гравитации, в конце концов, превращается в сингулярность - в точку бесконечной плотности и нулевого размера. Если повернуть вспять ход времени так, чтобы сжатие превратилось в расширение, станет возможным доказать, что у Вселенной было начало. Однако доказательство, основанное на теории относительности Эйнштейна, показывало также, что невозможно понять, как произошла Вселенная: оно демонстрировало, что все теории не действуют в момент начала Вселенной", - отмечает ученый.
Он задался вопросом, что произойдет, когда Вселенная прекратит расширяться и начнет сжиматься. "Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной", - говорил он.
Позже он приходит к выводу, что время все же не повернет свой ход вспять при сжатии Вселенной. "В реальном времени, в котором мы живем, у Вселенной есть две возможные судьбы. Она может продолжать расширяться вечно. Или она может начать сжиматься и прекратить свое существование в момент "большого сплющивания". Это будет похоже на большой взрыв, только - наоборот", - полагает физик.
Хокинг верил в существование внеземной жизни. "Во Вселенной со 100 миллиардами галактик, каждая из которых содержит сотни миллионов звезд, маловероятно, что Земля является единственным местом, где развивается жизнь. С чисто математической точки зрения, одни лишь цифры позволяют принимать мысль о существовании инопланетной жизни как абсолютно разумную. Реальной проблемой является то, как могут выглядеть инопланетяне, понравятся ли они землянам своим видом. Ведь они могут быть микробами или одноклеточными животными, или червями, которые населяли Землю в течение миллионов лет", - считает Хокинг.
По мнению Хокинга, у Вселенной все-таки будет финал, и человечеству не останется ничего другого, как покорять космос и осваивать новые планеты, и начать следует с Луны и Марса. "Расселение в космосе полностью изменит будущее человечества. Оно определит, будет ли у нас вообще какое-то будущее, - сказал ученый на научном фестивале в 2017 году. - Ясно, что мы вступаем в новую космическую эпоху. Мы стоим на пороге новой эры. Колонизация других планет человеком - это уже не научная фантастика, это может стать научным фактом".