Защита пожарных насосов. Противопожарные системы, судовые системы судна, рулевое устройство, классификация судов, транспортные суда, служебно-вспомогательные суда, суда технического флота и специальные суда, суда на подводных крыльях Давление в пожарной м

02.06.2020

Глава 12 - Стационарные аварийные пожарные насосы

1 Применение

В настоящей главе излагаются спецификации аварийных пожарных насосов, требуемых главой II-2 Конвенции. Настоящая глава не применяется к пассажирским судам валовой вместимостью 1000 и более. В отношении требований к таким судам см. правило II-2/10.2.2.3.1.1 Конвенции.

2 Технические спецификации

2.1 Общие положения

Аварийный пожарный насос должен быть стационарным насосом с независимым приводом.

2.2 Требования к компонентам

2.2.1 Аварийные пожарные насосы

2.2.1.1 Подача насоса

Подача насоса должна быть не менее 40% общей подачи пожарных насосов, требуемых правилом II-2/10.2.2.4.1 Конвенции, и в любом случае не менее нижеследующего:

2.2.1.2 Давление в кранах

Если насос подает количество воды, требуемое пунктом 2.2.1.1 , давление в любом кране должно быть не менее минимального давления, требуемого главой II-2 Конвенции.

2.2.1.3 Высоты всасывания

При всех условиях крена, дифферента, бортовой и килевой качки, которые могут возникать в процессе эксплуатации, общая высота всасывания и чистая положительная высота всасывания насоса должны определяться с учетом требований Конвенции и настоящей главы в отношении подачи насоса и давления в кране. Судно в балласте при входе в сухой док или выходе из него может не рассматриваться как находящееся в эксплуатации.

2.2.2 Дизельные двигатели и топливная цистерна

2.2.2.1 Пуск дизельного двигателя

Любой источник энергии с приводом от дизельного двигателя, питающий насос, должен быть способен легко запускаться вручную из холодного состояния при температуре вплоть до 0°С. Если это практически невозможно или если предполагаются более низкие температуры, необходимо рассмотреть возможность установки и эксплуатации приемлемых для Администрации средств подогрева, обеспечивающих быстрый пуск. Если ручной пуск практически невозможен, Администрация может разрешить применение других средств пуска. Эти средства должны быть такими, чтобы источник энергии с приводом от дизельного двигателя мог запускаться по меньшей мере шесть раз в течение 30 мин и по меньшей мере дважды в течение первых 10 мин.

2.2.2.2 Вместимость топливной цистерны

Любая расходная топливная цистерна должна содержать достаточное количество топлива, обеспечивающее работу насоса при полной нагрузке в течение по меньшей мере 3 ч; вне машинного помещения категории А должны иметься достаточные запасы топлива, обеспечивающие работу насоса при полной нагрузке дополнительно в течение 15 ч.

Вакуумная система центробежного пожарного насоса предназначена для предварительного заполнения водой всасывающей линии и насоса при заборе воды из открытого водоисточника (водоёма). Кроме того, с помощью вакуумной системы можно создать в корпусе центробежного пожарного насоса разряжение (вакуум) для проверки герметичности пожарного насоса.

В настоящее время на отечественных пожарных автомобилях применяется два типа вакуумных систем. В основе вакуумной системы первого типа лежит газоструйный вакуумный аппарат (ГВА) с насосом струйного типа, а в основе второго типа – шиберный вакуумный насос (объёмного типа).

Вывод по вопросу: на современных марках пожарных автомобилей используют различные вакуумные системы.

Газоструйные вакуумные системы

Данная вакуумная система состоит из следующих основных элементов: вакуумного клапана (затвора), установленного на коллекторе пожарного насоса, газоструйного вакуумного аппарата, установленного в выпускном тракте двигателя пожарного автомобиля, перед глушителем, механизма управления ГВА, рычаг управления которым размещён в насосном отсеке, и трубопровода, соединяющего газоструйный вакуумный аппарат и вакуумный клапан (затвор). Принципиальная схема вакуумной системы показана на рис. 1.

Рис. 1 Схема вакуумной системы центробежного пожарного насоса

1 – корпус газоструйного вакуумного аппарата; 2 – заслонка; 3 – струйный насос; 4 – трубопровод; 5 – оверстие к полости пожарного насоса; 6 – пружина; 7 – клапан; 8 – эксцентрик; 9 – ось эксцентрика; 10 – рукоятка эксцентрика; 11 – корпус вакуумного клапана; 12 – отверстие; 13 – выпускная труба, 14 – седло клапана.

Корпус газоструйного вакуумного аппарата 1 имеет заслонку 2, которая изменяет направление движения отработавших газов двигателя пожарного автомобиля либо к струйному насосу 3, либо в выпускную трубу 13. Струйный насос 3 соединён трубопроводом 4 с вакуумным клапаном 11. Вакуумный клапан установлен на насосе и сообщается с ним через отверстие 5. Внутри корпуса вакуумного клапана пружинами 6 к сёдлам 14 прижимаются два клапана 7. При перемещении рукоятки 10 с осью 9 эксцентрик 8 отжимает клапаны 7 от сёдел. Работа системы происходит следующим образом.

В транспортном положении (см. рис. 1 «А») заслонка 2 находится в горизонтальном положении. Клапаны 7 пружинами 6 прижаты к сёдлам. Отработавшие газы двигателя проходят через корпус 1, выпускную трубу 13 и выбрасываются в атмосферу через глушитель.

При заборе воды из открытого водоисточника (см. рис. 1 «Б») после присоединения к насосу всасывающей линии, рукояткой вакуумного клапана отжимают нижний клапан вниз. При этом полость насоса через полость вакуумного клапана и трубопровод 4 соединяется с полостью струйного насоса. Заслонку 2 переводят в вертикальное положение. Отработавшие газы будут направлены в струйный насос. Во всасывающей полости насоса будет создаваться разрежение, и насос будет заполнен водой под атмосферным давлением.

Выключение вакуумной системы происходит после заполнения насоса водой (см. рис. 1 «В»). Перемещая рукоятку, отжимают от седла верхний клапан. При этом нижний клапан будет прижат к седлу. Всасывающая полость насоса отключается от атмосферы. Но теперь с атмосферой через отверстие 12 будет соединен трубопровод 4, и струйный насос удалит воду из вакуумного клапана и соединительных трубопроводов. Это особенно необходимо проделать на зимний период для предотвращения замерзания воды в трубопроводах. Затем рукоятку 10 и заслонку 2 ставят в исходное положение.

Рис. 2 Вакуумный клапан

(см. рис. 2) предназначен для соединения всасывающей полости насоса с газоструйным вакуум-аппаратом при заборе воды из открытых водоемов и удаления воды из трубопроводов после заполнения насоса. В корпусе 6 клапана, отливаемого из чугуна или алюминиевого сплава, размещены два клапана 8 и 13 . Они прижимаются пружинами 14 к седлам. При положении рукоятки 9 «от себя», эксцентрик на валике 11 отжимает от седла верхний клапан. В этом положении насос отсоединен от струйного насоса. Перемещая рукоятку «на себя», отжимаем от седла нижний клапан 13, и всасывающая полость насоса соединяется со струйным насосом. При вертикальном положении рукоятки оба клапана будут прижаты к своим седлам.

В средней части корпуса выполнен платик 2 с отверстием для присоединения фланца соединительного трубопровода. В нижней части расположены два отверстия, закрытые глазками 1 из органического стекла. К одному из них прикрепляется корпус 4 электролампочки. Через глазок контролируют заполнение насоса водой.

На современных пожарных автомобилях в вакуумных системах пожарных насосов вместо вакуумного клапана (затвора) зачастую для соединения (разъединения) всасывающей полости пожарного насоса со струйным насосом устанавливают пробковые водопроводные краны в обыкновенном исполнении.

Затвор вакуумный

Газоструйный вакуумный аппарат предназначен для создания разрежения в полости пожарного насоса и всасывающей линии при предварительном заполнении их водой из открытого водоисточника. На пожарных автомобилях с бензиновыми двигателями устанавливают одноступенчатые газоструйные вакуумные аппараты, конструкция одного из которых представлена на рис. 3

Корпус 5 (распределительная камера) предназначен для распределения потока отработавших газов и изготавливается из серого чугуна. Внутри распределительной камеры предусмотрены приливы, обработанные под сёдла поворотной заслонки 14. Корпус имеет фланцы для крепления к выпускному тракту двигателя и для крепления вакуумного струйного насоса. Заслонка 14 изготавливается из жаропрочной легированной стали или ковкого чугуна и с помощью рычага 13 закреплена на оси 12. Ось заслонки 12 собирается на графитной смазке.

Посредством рычага 7 ось 12 поворачивается, закрывая либо отверстие корпуса 5, либо полость струйного насоса заслонкой 14. Струйный вакуумный насос состоит из чугунного или стального диффузора 1 и стального сопла 3. На струйном вакуумном насосе имеется фланец для присоединения трубопровода 9, который соединяет вакуумную камеру струйного насоса с полостью пожарного насоса через вакуумный клапан. При вертикальном положении заслонки 14 отработавшие газы проходят в струйный насос, как показано стрелкой на рис. 3.25. Вследствие разрежения в вакуумной камере 2 по трубопроводу 9 отсасывается воздух из пожарного насоса при открытом вакуумном клапане. Причём, чем больше скорость прохождения отработавших газов через сопло 3, тем больше создаётся разрежение в вакуумной камере 2, трубопроводе 9, пожарном насосе и всасывающей линии, если она присоединена к насосу.

Поэтому на практике при работе вакуумного струйного насоса (при заборе воды в пожарный насос или проверке его на герметичность) устанавливают максимальные обороты двигателя пожарного автомобиля. Если заслонка 14 перекрывает отверстие в вакуумный струйный насос, отработавшие газы проходят через корпус 5 газоструйного вакуумного аппарата в глушитель и далее в атмосферу.

На пожарных автомобилях с дизельным двигателем в вакуумных системах устанавливают двухступенчатые газоструйные вакуумные аппараты, которые по устройству и принципу работы напоминают одноступенчатые. Конструкция данных аппаратов способна обеспечивать кратковременную работу дизеля при возникновении противодавления в его выпускном тракте. Двухступенчатый газоструйный вакуумный аппарат показан на рис. 4. Вакуумный струйный насос аппарата прифланцован к корпусу 1 распределительной камеры и состоит из сопла 8, промежуточного сопла 3, приёмного сопла 4, диффузора 2, промежуточной камеры 5, вакуумной камеры 7, соединяющейся с атмосферой, через сопло 8, а через промежуточное сопло – с приёмным соплом и диффузором. В вакуумной камере 7 предусмотрено отверстие 9 для соединения её с полостью центробежного пожарного насоса.

Схема работы электропневмопривода включения ГВА

1 – газоструйный вакуумный аппарат; 2 – пневмоцилиндр привода ГВА; 3 – приводной рычаг; 4 – ЭПК включения ГВА; 5 – ЭПК выключения ГВА; 6 – ресивер; 7 – клапан ограничения давления; 8 – тумблер; 9 – атмосферный выход.

Для включения вакуумного струйного насоса необходимо заслонку в распределительной камере 1 повернуть на 90 0 . При этом заслонка перекроет выход отработавших газов дизеля через глушитель в атмосферу. Отработавшие газы поступают в промежуточную камеру 5 и, проходя через приёмное сопло 4, создают разрежение в промежуточном сопле 3. Под действием разрежения в промежуточном сопле 3 атмосферный воздух проходит через сопло 8 и повышает вакуум в вакуумной камере 7. Данная конструкция газоструйного вакуумного аппарата позволяет эффективно работать струйному насосу даже при невысоком давлении (скорости) потока отработавших газов.

На многих современных пожарных автомобилях применяется электропневматическая система привода ГВА, состав, конструкция, принцип действия и особенности эксплуатации которой изложены в главе.

Рис. 4 Двухступенчатый газоструйный вакуумный аппарат

Порядок работы с вакуумной системой на основе ГВА приведён на примере автоцистерн модели 63Б (137А). Для заполнения пожарного насоса водой от открытого водоисточника или проверке пожарного насоса на герметичность необходимо:

  • убедиться в герметичности пожарного насоса (проверить плотность закрытия всех кранов, вентилей и задвижек пожарного насоса);
  • открыть нижний клапан вакуумного затвора (рукоятку вакуумного клапана повернуть «на себя»);
  • включить газоструйный вакуумный аппарат (соответствующим рычагом управления с помощью заслонки в распределительной камере перекрыть выпуск отработавших газов через глушитель в атмосферу);
  • увеличить обороты холостого хода двигателя до максимальных;
  • наблюдать за появлением воды в смотровом глазке вакуумного клапана или за показанием мановакууметра на пожарном насосе;
  • при появлении воды в смотровом глазке вакуумного клапана или при показаниях мановакууметра разрежения в насосе не менее 73 кПа (0,73 кгс/см 2), закрыть нижний клапан вакуумного затвора (рукоятку вакуумного клапана установить в вертикальное положение или повернуть «от себя»), уменьшить обороты двигателя до минимальных холостого хода и выключить газоструйный вакуумный аппарат (соответствующим рычагом управления с помощью заслонки в распределительной камере перекрыть поступление отработавших газов в струйный насос).

Время заполнения пожарного насоса водой при геометрической высоте всасывания 7 м должно быть не более 35 с. Вакуум (при проверке пожарного насоса на герметичность) в пределах 73…76 кПа должен достигаться за время не более 20 с.

Система управления газоструйным вакуумным аппаратом так же может иметь ручной или электропневматический привод.

Ручной привод включения (поворота заслонки) осуществляется рычагом 8 (см. рис. 5) из насосного отсека, соединенным через систему тяг 10 и 12 с рычагом оси заслонки газоструйного вакуумного аппарата. Для обеспечения плотного прилегания заслонки к седлам распределительной камеры газоструйного вакуумного аппарата в процессе эксплуатации пожарного автомобиля требуется периодическая регулировка длины тяг с помощью соответствующих регулировочных узлов. Плотность прилегания заслонки в ее вертикальном положении (при включении газоструйного вакуумного аппарата) оценивается по отсутствию прохождения отработавших газов через глушитель в атмосферу (при целостности самой заслонки и исправности её привода).

Вывод по вопросу:

Электрический шиберный вакуумный насос

В настоящее время в вакуумных системах центробежных пожарных насосов с целью повышения технических и эксплуатационных характеристик устанавливают шиберные вакуумные насосы, в т.ч. АВС-01Э и АВС-02Э.

По своему составу и функциональным характеристикам вакуумный насос АВС-01Э является автономной вакуумной системой водозаполнения центробежного пожарного насоса. АВС-01Э включает в себя следующие элементы: вакуумный агрегат 9, блок (пульт) управления 1 с электрокабелями, вакуумный клапан 4, трос управления вакуумным клапаном 2, датчик заполнения 6, два гибких воздухопровода 3 и 10.


Рис. 4 Комплект вакуумной системы АВС-01Э

Вакуумный агрегат (см. рис. 4) предназначен для создания необходимого при водозаполнении разрежения в полости пожарного насоса и всасывающих рукавах. Он представляет собой вакуумный насос 3 шиберного типа с электроприводом 10. Собственно вакуумный насос состоит из корпусной части, образованной корпусом 16 с гильзой 24 и крышками 1 и 15, ротора 23 с четырьмя лопатками 22, установленного на двух шарикоподшипниках 18, системы смазки (включающей масляный бачок 26, трубку 25 и жиклёр 2) и двух патрубков 20 и 21 для присоединения воздухопроводов.

Принцип работы вакуумного насоса

Вакуумный насос работает следующим образом. При вращении ротора 23 лопатки 22 под действием центробежных сил прижимаются к гильзе 24 и образует, таким образом, замкнутые рабочие полости. Рабочие полости за счёт вращения ротора, происходящего против часовой стрелки, перемещаются от всасывающего окна, сообщающегося с входным патрубком 20, к выходному окну, сообщающемуся с выходным патрубком 21. При прохождении через область всасывающего окна каждая рабочая полость захватывает порцию воздуха и перемещает её к выхлопному окну, через которое воздух по воздухопроводу выбрасывается в атмосферу. Движение воздуха из всасывающего окна в рабочие полости и из рабочих полостей в выхлопное окно происходит за счёт перепадов давлений, которые образуются из-за наличия эксцентриситета между ротором и гильзой, приводящего к сжатию (расширению) объёма рабочих полостей.

Смазка трущихся поверхностей вакуумного насоса осуществляется моторным маслом, которое подаётся в его всасывающую полость из масляного бачка 26 за счёт разрежения, создаваемого самим вакуумным насосом во входном патрубке 20. Заданный расход масла обеспечивается калиброванным отверстием в жиклёре 2. Электропривод вакуумного насоса состоит из электродвигателя 10 и тягового реле 7. Электродвигатель 10, рассчитан на напряжение 12 В постоянного тока. Ротор 11 электродвигателя одним своим концом опирается на втулку 9, а второй конец через центрирующую втулку 12 опирается на выступающий вал ротора вакуумного насоса. Поэтому включение электродвигателя после отстыковки его от вакуумного насоса не допускается.

Крутящий момент от двигателя к ротору вакуумного насоса передаётся через штифт 13 и паз на конце ротора. Тяговое реле 7 обеспечивает коммутирование контактов силовой цепи «+12 В» при включении электродвигателя, а также осуществляет перемещение жилы троса 2, приводящее к открытию вакуумного клапана 4, в системах где он предусмотрен. Кожух 5 защищает открытые контакты электродвигателя от случайного замыкания и от попадания на них воды при эксплуатации.

Вакуумный клапан предназначен для автоматического перекрывания полости пожарного насоса от вакуумного агрегата по окончании процесса водозаполнения и установлен в дополнение к вакуумному затвору 5. 2, закреплённая на тяге 7 соединяется с жилой троса от тягового реле вакуумного агрегата. При этом оплётка троса фиксируется втулкой 4, имеющей продольный паз для установки троса. При включении тягового реле жила троса тянет шток 6 за серьгу 2, и проточная полость вакуумного клапана открывается. При отключении тягового реле (т.е. при отключении вакуумного агрегата), шток 6 под действием пружины 9 возвращается в исходное (закрытое) положение. При таком положении штока проточная полость вакуумного клапана остаётся перекрытой, а полости центробежного пожарного насоса и шиберного насоса – разобщёнными. Для смазки трущихся поверхностей клапана предусмотрено смазочное кольцо 8, в которое при эксплуатации вакуумной системы через отверстие «А» необходимо добавлять масло.

Датчик заполнения предназначен для подачи сигналов в блок управления о завершении процесса водозаполнения. Датчик представляет собой электрод, установленный в изоляторе в верхней точке внутренней полости центробежного пожарного насоса. При заполнении датчика водой, изменяется электрическое сопротивление между электродом и корпусом («массой»). Изменение сопротивления датчика фиксируется блоком управления, в котором формируется сигнал на отключение электродвигателя вакуумного агрегата. Одновременно на пульте (блоке) управления включается индикатор «Насос заполнен».

Блок (пульт) управления предназначен для обеспечения работы вакуумной системы в ручном и автоматическом режимах.

Тумблер 1 «Питание» служит для подачи питания к цепям управления вакуумным агрегатом и для задействования световых индикаторов о состоянии вакуумной системы. Тумблер 2 «Режим» предназначен для изменения режима работы системы – автоматического («Авт.») или ручного («Ручн.»). Кнопка 8 «Пуск» используется для включения двигателя вакуумного агрегата. Кнопка 6 «Стоп» служит для выключения двигателя вакуумного агрегата и для снятия блокировки после загорания индикатора «Не норма». Кабели 4 и 5 предназначены для соединения блока управления, соответственно, с двигателем вакуумного агрегата и датчиком заполнения. На пульте имеются следующие световые индикаторы 7, служащие для визуального контроля за состоянием вакуумной системы:

1. Индикатор «Питание» загорается при включении тумблера 1 «Питание»;

2. Вакуумирование – сигнализирует о включении вакуумного насоса при нажатии кнопки 8 «Пуск»;

  1. Насос заполнен – загорается при срабатывании датчика заполнения, когда пожарный насос полностью заполнен водой;
  2. Не норма – фиксирует следующие неисправности вакуумной системы:
    • превышено максимальное время непрерывной работы вакуумного насоса (45…55 секунд) вследствие недостаточной герметичности всасывающей магистрали или пожарного насоса;
    • плохой или отсутствующий контакт в цепи тягового реле вакуумного агрегата из-за подгорания контактов реле или обрыва проводов;
    • электродвигатель вакуумного насоса перегружен вследствие засорения шиберного вакуумного насоса или других причин.

На модели АВС-02Э и последних моделях АВС-01Э вакуумный клапан (поз 4 на рис. 3.28) не устанавливается.

Вакуумный насос АВС-02Э обеспечивает работу вакуумной системы только в ручном режиме.

В зависимости от комбинации положения тумблеров «Питание» и «Режим» вакуумная система может находится в четырёх возможных состояниях:
  1. В нерабочем состоянии тумблер «Питание» должен находиться в положении «Откл», а тумблер «Режим» — в положении «Авт». Данное положение тумблеров является единственным, при котором нажатие на кнопку «Пуск» не приводит к включению электродвигателя вакуумного агрегата. Индикация отключена.
  2. В автоматическом режиме (основной режим) тумблер «Питание» должен находится в положении «Вкл», а тумблер «Режим» — в положении «Авт». При этом электродвигатель включается кратковременным нажатием кнопки «Пуск». Отключение производится либо автоматически (при срабатывании датчика заполнения или одного из видов защиты электропривода), либо принудительно – нажатием кнопки «Стоп». Индикация включена и отражает состояние вакуумной системы.
  3. В ручном режиме тумблер «Питание» должен находиться в положении «Вкл», а тумблер «Режим» — в положении «Ручн». Двигатель включается нажатием кнопки «Пуск» и работает до тех пор, пока кнопка «Пуск» удерживается в нажатом состоянии. В данном режиме электронная защита привода отключена, а показания световых индикаторов только визуально отражают лишь процесс водозаполнения. Ручной режим предназначен для возможности работы в случае сбоев в системе автоматики, при ложных срабатываниях блокировок. Контроль момента окончания процесса водозаполнения и отключения двигателя вакуумного насоса в ручном режиме осуществляется визуально по индикатору «Насос заполнен».
  4. Для обеспечения выполнения боевой задачи на пожаре в случае отказа электронного блока, когда в автоматическом режиме система не работает, а в ручном режиме световые индикаторы не отражают реально происходящих процессов, существует аварийный режим, при котором тумблер «Питание» необходимо выключить, а тумблер «Режим» перевести в положение «Ручн». При этом режиме электродвигатель управляется так же, как и в ручном режиме, но индикация при этом отключена, и контроль момента окончания процесса водозаполнения и отключения двигателя вакуумного насоса осуществляется по факту появления воды из выхлопного патрубка. Систематическая работа в этом режиме недопустима, т.к. может привести к серьезным поломкам элементов вакуумной системы. Поэтому сразу же по возвращению в пожарную часть следует выявить и устранить причину неисправности блока управления.

Воздуховоды 3 и 10 (см. рис. 3.28) предназначены соответственно для соединения полости центробежного пожарного насоса с вакуумным агрегатом и для направления выхлопа из вакуумного агрегата.

Эксплуатация вакуумной системы с шиберным насосом

Порядок работы вакуумной системы:

  1. Проверка пожарного насоса на герметичность («сухой вакуум»):

а) подготовить пожарный насос к проверке: установить на всасывающий патрубок заглушку, закрыть все краны и вентили;

б) открыть вакуумный затвор;

в) включить тумблер «Питание» на блоке (пульте) управления;

г) запустить вакуумный насос: в автоматическом режиме запуск производится кратковременным нажатием кнопки «Пуск», в ручном режиме – кнопку «Пуск» нужно нажать и удерживать в нажатом положении;

д) произвести вакуумирование пожарного насоса до уровня разряжения – 0,8 кгс/см 2 (при нормальном состоянии вакуумного насоса, пожарного насоса и его коммуникаций эта операция занимает не более 10 сек);

е) остановить вакуумный насос: в автоматическом режиме останов производится принудительно – нажатием кнопки «Стоп», в ручном режиме – нужно отпустить кнопку «Пуск»;

ж) закрыть вакуумный затвор и при помощи секундомера проверить скорость падения разрежения в полости пожарного насоса;

з) выключить тумблер «Питание» на блоке (пульте) управления, а тумблер «Режим» установить в положение «Авт».

  1. Забор воды в автоматическом режиме:

б) открыть вакуумный затвор;

в) установить тумблер «Режим» в положение «Авт» и включить тумблер «Питание»;

г) запустить вакуумный насос – нажать и отпустить кнопку «Пуск»: при этом одновременно с включением привода вакуумного агрегата загорается индикатор «Вакуумирование»;

д) после окончания водозаполнения привод вакуумного агрегата отключается автоматически: при этом загорается индикатор «Насос заполнен» и гаснет индикатор «Вакуумирование». В случае негерметичности пожарного насоса через 45…55 секунд должно произойти автоматическое отключение привода вакуумного насоса и загореться индикатор «Не норма», после чего необходимо нажать кнопку «Стоп»;

ж) выключить тумблер «Питание» на блоке (пульте) управления.

В результате отказа работоспособности датчика заполнения (это может произойти, например, при обрыве провода) автоматическое отключение вакуумного насоса не срабатывает, и индикатор «Насос заполнен» не загорается. Данная ситуация является критической, т.к. после заполнения пожарного насоса вакуумный насос не отключается и начинает «захлебываться» водой. Такой режим сразу же обнаруживается по характерному звуку, вызванному выбросом воды из выхлопного патрубка. В этом случае рекомендуется, не дожидаясь срабатывания защиты, закрыть вакуумный затвор и отключить вакуумный насос принудительно (кнопкой «Стоп»), а по окончании работы обнаружить и устранить неисправность.

  1. Забор воды в ручном режиме:

а) подготовить пожарный насос к забору воды: закрыть все вентили и краны пожарного насоса и его коммуникаций, присоединить всасывающие рукава с сеткой и погрузить конец всасывающей линии в водоем;

б) открыть вакуумный затвор;

в) установить тумблер «Режим» в положение «Ручн» и включить тумблер «Питание»;

г) запустить вакуумный насос – нажать кнопку «Пуск» и удерживать ее в нажатом положении до тех пор, пока не загорится индикатор «Насос заполнен»;

д) после окончания водозаполнения (как только загорится индикатор «Насос заполнен») остановить вакуумный насос – отпустить кнопку «Пуск»;

е) закрыть вакуумный затвор и начать работу с пожарным насосом в соответствии с инструкцией по его эксплуатации;

ж) выключить тумблер «Питание» на блоке (пульте) управления, а тумблер «Режим» установить в положение «Авт».

В случае срыва напора необходимо остановить пожарный насос и повторить операции «в» – «е».

  1. Особенности работы в зимнее время:

а) После каждого использования насосной установки необходимо продуть воздухопроводы вакуумного насоса, даже в тех случаях, когда подача воды пожарным насосом производилась из цистерны или гидранта (вода может попадать в вакуумный насос, например, через неплотно закрытый или неисправный вакуумный затвор). Продувку следует производить путем кратковременного (на 3÷5 сек.) включения вакуумного насоса. При этом с всасывающего патрубка пожарного насоса необходимо снять заглушку и открыть вакуумный затвор.

б) Перед началом работы следует проверять вакуумный клапан на отсутствие примерзания его подвижной части. Для проверки необходимо убедиться в подвижности его штока, потянув за серьгу 2 (см. рис. 3.30), к которой присоединена жила троса. При отсутствии примерзания серьга вместе со штоком вакуумного клапана и жилой троса должна перемещаться от усилия примерно 3÷5 кгс.

в) Для заправки масляного бачка вакуумного насоса применять зимние марки моторных масел (с пониженной вязкостью).

Вывод по вопросу: в вакуумных системах центробежных пожарных насосов с целью повышения технических и эксплуатационных характеристик устанавливают шиберные вакуумные насосы.

Техническое обслуживание

При одновременно с проверкой пожарного насоса на герметичность проверяют работоспособность газоструйного вакуумного аппарата, вакуумного клапана и осуществляют (при необходимости) регулировку тяг привода газоструйного вакуумного аппарата.

ТО-1 включает операции ежедневного технического обслуживания. Кроме того, при необходимости, производится демонтаж, полная разборка, смазка, замена изношенных деталей и монтаж газоструйного вакуумного аппарата и вакуумного клапана. Для смазки оси заслонки в распределительной камере газоструйного вакуумного аппарата применяется графитная смазка.

При ТО-2 , помимо операций ТО-1, проверяется работоспособность вакуумной системы на специальных стендах станции (поста) технической диагностики.

Для обеспечения постоянной технической готовности вакуумной системы предусматриваются следующие виды технического обслуживания : ежедневное техническое обслуживание (ЕТО) и первое техническое обслуживание (ТО-1). Перечень работ и технические требования для проведения указанных видов технического обслуживания приведены в табл.

Перечень работ при проведении технических обслуживания вакуумной системы АВС-01Э.

Вид

технического обслуживания

Содержание работ Технические требования

(методика проведения)

Ежедневное техническое обслуживание (ЕТО) 1. Проверка наличия масла в масляном бачке. 1. Поддерживать уровень масла в бачке не менее 1/3 его объема.
2. Проверка работоспособности вакуумного насоса и функционирования системы смазки шиберного насоса. 2. Проверку провести в режиме испытания пожарного насоса на герметичность («сухой вакуум»). При включении вакуумного насоса маслоподводящая трубка должна полностью заполниться маслом до жиклёра.
Первое техническое обслуживание 1. Проверка затяжки крепежных деталей. 1. Проверить затяжку крепежа составных частей вакуумной системы.
2. Смазка штока и троса управления вакуумного клапана. 2. Закапать несколько капель моторного масла в отверстие А корпуса вакуумного клапана.

Отсоединить трос от вакуумного клапана и закапать в трос несколько капель моторного масла.

3. Проверка осевого люфта оплетки троса управления вакуумным клапаном в месте его соединения с тяговым реле электропривода вакуумного насоса. 3. Осевой люфт допускается не более 0,5 мм. Люфт определить путем перемещения взад-вперед оплетки троса. При несоответствии исключить люфт.
4. Проверка правильности положения серьги 2 вакуумного клапана. 4. Проверить величины зазоров:

— Зазора «Б» — при неработающем электроприводе;

— Зазора «В» — при работающем электроприводе.

Величины зазоров «Б» и «В» должны быть не менее 1 мм.

При необходимости зазоры следует отрегулировать.

Для регулировки отсоединить трос от вакуумного клапана, ослабить контргайку и выставить необходимое положение серьги; контргайку затянуть.

5. Проверка расхода масла. 5. Средний расход масла за цикл работы в 30 сек. должен быть не менее 2 мл.
6. Очистка рабочих поверхностей датчика заполнения. 6. Вывинтить датчик из корпуса,

очистить электрод и видимую часть поверхности корпуса до основного металла.

Вывод по вопросу: проведение ТО необходимо для поддержания вакуумных систем в работоспособном состоянии.

Неисправности вакуумных систем

При эксплуатации вакуумной системы в составе насосной установки наиболее характерна следующая неисправность вакуумной системы: насос не заполняется водой (или не создаётся требуемый вакуум) при включённой вакуумной системе. Данная неисправность, при исправном двигателе пожарного автомобиля, может быть вызвана следующими причинами:

  1. Не полностью перекрыт заслонкой выход отработавших газов через глушитель в атмосферу. Причинами могут быть наличие нагара на заслонке и в корпусе ГВА, нарушение регулировки привода тяги его управления, износа оси заслонки.
  2. Засорён диффузор или сопло вакуумного струйного насоса.
  3. Имеются неплотности в соединениях вакуумного клапана и пожарного насоса, трубопровода вакуумной системы или трещин в ней.
  4. Имеются деформации или трещины корпуса ГВА.
  5. Имеются неплотности в выпускном тракте двигателя пожарного автомобиля (происходят, как правило, из-за прогара выпускных труб).
  6. Засорение трубопровода вакуумной системы или замерзание в нём воды.

Возможные неисправности вакуумной системы АВС-01Э и методы их устранения

Наименование отказа, его внешние признаки Вероятная причина Метод устранения
При включении тумблера «Питание» индикатор «Питание» не загорается. Перегорел предохранитель блока управления. Заменить предохранитель.
Обрыв в цепи питания блока управления. Устранить обрыв.
При работе в автоматическом режиме после забора воды автоматического отключения вакуумного насоса не происходит. Обрыв цепи от электрода или от корпуса датчика заполнения. Устранить обрыв цепи.
Снижение электропроводности поверхности корпуса и электрода датчика заполнения Снять датчик заполнения и очистить электрод и поверхность его корпуса от загрязнений.
Недостаточное напряжение питания на блоке управления. Проверить надёжность контактов в электрических соединениях; обеспечить напряжение питания блока управления не менее 10 В.
В автоматическом режиме вакуумный насос запускается, но через 1-2 сек. останавливается; гаснет индикатор «Вакуумирование» и загорается индикатор «Не норма». В ручном режиме насос работает нормально. Ненадежный контакт в соединительных кабелях между блоком управления и электроприводом вакуумного насоса. Проверить надёжность контактов в электрических соединениях.
Окислены наконечники проводов на контактных болтах тягового реле или ослабли гайки их крепления. Зачистить наконечники и затянуть гайки.
Большое (более 0,5 В) падение напряжения между контактными болтами тягового реле при работе электродвигателя. Снять тяговое реле, проверить лёгкость перемещения якоря. Если якорь перемешается свободно, то зачистить контакты реле или заменить его.
Вакуумный насос не запускается ни в автоматическом, ни в ручном режиме. Через 1-2 сек. после нажатия кнопки «Пуск» гаснет индикатор «Вакуумирование» и загорается индикатор «Не норма» Затруднено перемещение жилы троса управления вакуумным клапаном. Проверить легкость перемещения жилы троса, при необходимости устранить сильный изгиб троса или смазать моторным маслом его жилу.
Затруднено перемещение штока вакуумного клапана. Смазать клапан через отверстие А. В зимнее время принять меры, исключающие примерзание деталей вакуумного клапана.
Обрыв силовой цепи питания Устранить обрыв цепи.
Нарушено положение серьги вакуумного клапана. Отрегулировать положение серьги.
Обрыв электрических

цепей в кабеле, соединяющем блок управления с электроприводом вакуумного агрегата.

Устранить обрыв цепи.
Подгорели контакты тягового реле. Зачистить контакты или заменить тяговое реле.
Электродвигатель перегружен (шиберный насос заторможен замерзшей водой или посторонними предметами). Проверить состояние шиберного насоса. В зимнее время принять меры, исключающие взаимное примерзание деталей шиберного насоса.
При работе вакуумного насоса отмечается, что расход масла слишком мал (в среднем менее 1 мл за цикл работы) Смазочное масло не соответствующей марки или слишком вязкое. Заменить на всесезонное моторное масло по ГОСТ 10541.
Засорилось дозирующее отверстие жиклера 2 в маслопроводе. Прочистить дозирующее отверстие маслопровода.
Имеет место подсос воздуха через стыки маслопровода. Подтянуть хомутики крепления маслопровода.
При работе вакуумного насоса не обеспечивается необходимое разрежение Подсос воздуха во всасывающих рукавах, через незакрытые вентили, сливные краны, через поврежденные воздуховоды. Обеспечить герметичность вакуумного объема.
Подсос воздуха через масляный бак (при полном отсутствии масла). Заправить масляный бак.
Недостаточное напряжение питания электропривода вакуумного агрегата. Зачистить контакты силовых кабелей, полюсные выводы аккумуляторной батареи; смазать их техническим вазелином и надежно затянуть. Зарядить АКБ
Недостаточная смазка шиберного насоса. Проверить расход масла.

Вывод по вопросу: Зная устройство и возможные неисправности вакуумных систем, водитель может быстро найти и устранить неисправность.

Вывод по занятию: Вакуумная система центробежного пожарного насоса предназначена для предварительного заполнения водой всасывающей линии и насоса при заборе воды из открытого водоисточника (водоёма), кроме того, с помощью вакуумной системы можно создать в корпусе центробежного пожарного насоса разряжение (вакуум) для проверки герметичности пожарного насоса.

Блин интернет зло.
Дорогая наша Нина, конечно же, сам ПКФ, все понимает и отображает на себе что надо и как надо и передаст это на пост охраны (сигнал отображается, как "неисправность" или "Авария" не важно как его обозвать, и

Сигнализируется простым размыканием сухих контактов №5 и №6). Из паспорта на ПКФ я сделал вывод, что он может только контролировать два ввода электропитания (т.е. основной и резервный), ну и если что не так,

Переключить питание насоса с одного на другой ввод (АВР так сказать). В общем пункт СП.513130.2009
12.3.5 "... Рекомендуется подача кратковременного звукового сигнала: ... , 0 .... исчезновении напряжения на основном и резервном вводах электроснабжения установки..." Выполнен.
Но мне (да и вам тоже д.б. быть) нужен был сигнал и том, что управление силового шкафа стоит в автоматическом режиме, чтобы избежать ситуацию, что все готово, только вот "ручной" режим работы на щите или

Вообще "0" (отключен). Или на их щитах нет такого переключателя? :)

Вы дадите сигнал, а мне (вам) кукишь с маслом, силовой щит не сработает. Мы кричим, ругемся что такое, да как так, уже все горит, АПС дала, сигнал, я 100 раз уже сам запустил! Где ВОДА? Кричу я в конвульсиях

:). Конечно грамотные монтажники не допустят такого и проконтролируют, но это уже классика в проектах, снять этот сигнал с щита.

Позвонил в "Плазму-Т". Мне сказали, что ПКФ это контролирует, (во что я не верю, из схем не вижу, как он это делает). Допустим, он контролирует. Представим себе сидим на посту и тут приходит общий сигнал

"НЕИСПРАВНОСТЬ". И не ясно, что там такое, т.е. без расшифровки. В общем, сидите, видите на ЦПИ "Неисправность". А это дядя Федр что-то там делал и перевел в ручной режим установку и забыл перевести назад.

Вы звоните в службу, которая вас обслуживает, они вам сейчас приедем, за срочность с вас не рубь, а два. А всего-то надо было сходить и повернуть переключатель. Смирился на этом, что есть слабое место в

Моей системе. И пока не переубедят (сам где найду объяснение, в паспорте напишут, вы просветите), что он на самом деле контролирует, воздержусь применять их оборудование в дальнейшем.

Возможно мне ответили не так, а могу предположить, что авт. режим контролируется самой цепью запуска (клеммы ПУ Х4.1 и так далее), а не ПКФ. Что если цепь не оборвана, то нормально все и следовательно "авт.

Режим". Но тогда придет сигнал или "НЕ АВТ. РЕЖИМ" или "ОБРЫВ линии", опять двадцать пять. Не знаю, сейчас некогда разбираться, пока проект заморожен на время (более срочный вытеснил). Потом наверное позвоню

И потерзаю Плазму-Т. А так нормальное оборудование.

А кто-нибудь щиты ШАК противопожарных дел видел, на них выполняется условие

Цитата СП5.13130.2009 12.3.6
12.3.6 В помещении насосной станции следует предусматривать световую сигнализацию:
...
б) об отключении автоматического пуска пожарных насосов, насосов-дозаторов, дренажного
насоса;
...Плазма помогала?

--Конец цитаты------
Проект делать нет. Наделают, отвечай потом за них:).
После прочтения документации я позвонил им и устроил допрос с пытками:) (шучу про пытки) про возможности их оборудования, в общем спрашивал, это могут? это делают? и т.п. только по их оборудованию.

Не нравится мне их паспорта, как то написано там, вроде бы все, но как-то коряво. шлифовать надо, чтобы прочитал и понятно было бы сразу. Из-за нее и были к ним вопросы.

Цитата Нина 13.12.2011 18:56:31

--Конец цитаты------
Зато дай АПС парикмахерской сделать, буду репу чесать:).

Andorra1 Не все так просто.
У датчика пределы уставок 0.7-3.0МПа. Если не внедряться в зоны возвратов (Max и min значений) , датчик можно настроить (т.е. задать) на срабатывание в диапазоне 0.7-3.0МПа т.е. ваши 0,3 и 0,6Мпа что-то тут не так. толи лыжи не едут, то ли я тупой. Это зоны возврата Min и max как-то задают диапазон точности срабатывания. Вроде как, поставили уставку но 2.3МПА то прибор при повышении давления сработает в каком-то диапазоне от 2.24 и до 2.5 гарантированно, а не точно в 2.3 МПа. В общем хрен его знает.


Параллелограммы скоростей на рабочем колес

При входе на лопасть и выходе с лопасти, каждая частица жидкости приобретает соответственно:

1. Окружные скорости U 1 и U 2 , направленные по касательным к входной и
выходной окружностям лопастного колеса.

2. Относительные скорости W 1 и W 2 , направленные по касательной к поверхности профиля лопасти.

3. Абсолютные скорости C 1 и C 2 , получаемые в результате геометрического сложения U1,

Так как насос представляет собой механизм, преобразующий механическую энергию привода, в энергию (напор), сообщающую движение жидкости в межлопастном пространстве колеса, то теоретическую её величину (напор), полученную при работе насоса, можно определить по формуле Эйлера:

C 2 U 2 соs α 2 – C 1 U 1 соs α 1

Н t ∞ = __________________________

В виду того, что у центробежного насоса отсутствует направляющий аппарат при входе жидкости на лопасти, во избежание больших гидравлических потерь от ударов жидкости о лопасти, и уменьшения потерь напора, вход жидкости на колесо делают радиальным (направление абсолютной скорости С 1 - радиальное). При этом α 1 = 90, тогда соs 90 - 0, следовательно, произведение C 1 U 1 соs α 1 = 0. Таким образом, основное уравнение напора центробежного насоса, или уравнение Эйлера примет вид:

Н t ∞ = C 2 U 2 соs α 2 / g

В действительном насосе имеется конечное число лопастей и потери напора вследствие завихрений частиц жидкости учитываются коэффициентом φ (фи), а гидравлические сопротивления учитываются гидравлическим КПД - ηг, тогда действительный напор примет вид: Нд = Нt φηг

С учётом всех потерь КПД центробежного насоса составляет ηн 0.46-0,80.

В эксплуатационных условиях напор центробежного насоса определяется по эмпирической формуле и зависит от числа оборотов приводного двигателя и диаметра лопастного колеса:

Нн = к"* n 2 * D 2 ,

где: к"- опытный безразмерный коэффициент

n - частота вращения рабочего колеса, об/мин.

D - наружный диаметр колеса, м.

Подачу насоса лс -1 ориентировочно определяют по диаметру н нагнетательного патрубка:

Qн = k" d 2

где: k" - для диаметра патрубка до 100 мм - 13-48, более 100 мм – 20-25

d – диаметр нагнетательного патрубка в дм.

2. Для обеспечения нормальной и безопасной работы судна , а также для создания соответствующих условий пребывания на нем людей служат судовые системы.
Под судовой системой понимается сеть трубопроводов с механизмами, аппаратами и приборами, выполняющая на судне определенные функции. С помощью судовых систем осуществляются: прием и удаление водяного балласта, борьба с пожарами, осушение отсеков судна от скапливающейся в них воды, снабжение пассажиров и экипажа питьевой и мытьевой водой, удаление нечистот и загрязненной воды, поддержание необходимых параметров (кондиций) воздуха в помещениях. Некоторые суда, как, например, танкеры, ледоколы, рефрижераторы и др., в связи со специфическими условиями эксплуатации оборудуют специальными системами. Так, танкеры оснащают системами, предназначенными для приема и выкачки жидкого груза, его подогрева в целях облегчения перекачки, мытья танков и их зачистки от остатков нефтепродуктов. Большое число функций, выполняемых судовыми системами, обусловливают многообразие их конструктивных форм и используемого механического оборудования. В состав судовых систем входят: трубопроводы, состоящие из соединенных между собой отдельных труб и арматуры (задвижек, клапанов, кранов), которая служит для включения или выключения системы и ее участков, а также для различных регулировок и переключений; механизмы (насосы, вентиляторы, компрессоры), сообщающие механическую энергию протекающей через них среде и обеспечивающие перемещение последней по трубопроводам; сосуды (цистерны, баллоны и др.) для хранения той или иной среды; различные аппараты (подогреватели, охладители, испарители и др.), служащие для изменения состояния среды; средства управления системой и контроля за ее работой.
Из перечисленных механизмов и аппаратов в каждой данной судовой системе могут быть лишь некоторые из них. Это зависит от назначения системы и характера выполняемых ею функций.
Кроме систем общесудового назначения, на судне имеются системы, которые обслуживают судовую энергетическую установку. На дизельных судах эти системы снабжают главные и вспомогательные двигатели топливом, маслом, охлаждающей водой и сжатым воздухом. Системы судовых энергетических установок рассматривают в курсе, посвященном этим установкам.

3. Современные морские суда являются местом постоянной работы и жительства членов экипажей и продолжительного пребывания пассажиров. Поэтому в жилых, служебных, пассажирских и общественных помещениях этих судов в любых районах плавания, в любое время года и при любых метеорологических условиях должен поддерживаться благоприятный для людей микроклимат, т. е. совокупность состава и параметров состояния воздуха, а также тепловых излучений в ограниченных пространствах помещений. Микроклимат в судовых помещениях обеспечивается с помощью систем комфортного кондиционирования воздуха и соответствующей изоляции помещений, температура внутренней поверхности которых не должна существенно (более чем на 2° С) отличаться от температуры воздуха в этих помещениях.

Судовая рефрижераторная установка.
1 - компрессор; 2 - конденсатор; 3 - расширительный клапан; 4 - испаритель; 5 - вентилятор; о - рефрижераторная камера; 7 - помещение испарительной установки.

Системы комфортного кондиционирования предназначены для очистки и тепловлажностной обработки воздуха, подаваемого в помещения. При этом в помещении должны быть обеспечены определенные, наперед заданные кондиции, т. е. параметры состава и состояния воздуха: его чистота, достаточный процент содержания кислорода, температура, относительная влажность и подвижность (скорость перемещения). Эти заданные кондиции воздуха и определяют так называемые комфортные условия для людей.

В различных районах плавания судов в разное время года температура наружного (атмосферного) воздуха может достигать самых больших (до 40-45°С) и самых низких (до -50°С) значений. Температура забортной воды при этом может изменяться в широких пределах: от +35°С до -2°С, а содержание влаги в 1 кг воздуха -от 24-26 до 0,1-0,5 г. В таких условиях плавания судна существенно изменяется и интенсивность солнечной радиации. Если учесть, что суда представляют собой большие металлические сооружения с высоким коэффициентом теплопроводности, то становится ясно, насколько велико влияние внешних условий на формирование микроклимата в судовых помещениях. К тому же, на судне достаточно много внутренних объектов тепло- и влаго-выделений.

Все это требует от судовой системы комфортного кондиционирования воздуха большой гибкости (маневренности) в работе. В теплых районах (или в летнее время) она должна обеспечивать отвод из помещений соответствующих тепло- и влагоизбытков, а в холодных районах (или в зимнее время) - компенсировать тепло-потери и отводить избыточную влагу, выделяемую в основном людьми, а также некоторым оборудованием. В летнее время года наружный воздух перед подачей в помещения обычно требуется охлаждать и осушать, а в зимнее - подогревать и увлажнять (хотя наружный воздух в зимнее время и имеет высокую относительную влажность - до 80-90%, он содержит очень небольшое количество влаги, не более 1-3 г на 1 кг воздуха).

Подогрев и увлажнение воздуха осуществляют, как правило, водяным паром или водой, а его охлаждение и осушение - с помощью холодильных машин. Таким образом, холодильные машины являются неотъемлемой частью судовых установок комфортного кондиционирования воздуха (в дальнейшем для краткости будем опускать слово «комфортное»).

Кроме того, холодильные машины используются почти на всех судах морского и речного флота для сохранения запаса провизии, а также на промысловых, производственных и транспортных рефрижераторных судах для обработки и хранения скоропортящихся грузов (такую функцию холодильных машин принято называть рефрижерацией). В посление годы холодильные машины стали применять для осушения воздуха в трюмах сухогрузных и танках нефтеналивных судов. Это предотвращает порчу гигроскопических грузов (муки, зерна, хлопка, табака и пр.), повреждение перевозимого на судах оборудования, механизмов и значительно уменьшает коррозию внутренних металлических частей корпуса и оборудования судов. Такая обработка воздуха трюмов и танков обычно называется техническим кондиционированием.

Первый опыт применения на судах «машинного» охлаждения относится к 70-80-м годам прошлого столетия, когда почти одновременно были созданы и начали распространяться парокомпрес-сорные аммиачные, углекислотные и сернистоангидридные, воздушные и абсорбционные холодильные машины. Так, в 1876 г. французским инженером-изобретателем Шарлем Телье впервые успешно был применен «машинный» холод на пароходе «Фригори-фик» для перевозки охлажденного мяса из Буэнос-Айреса в Руан. В 1877 г. пароход «Парагвай», оборудованный абсорбционной холодильной установкой, доставил мороженое мясо из Южной Америки в Гавр, причем мясо было заморожено на этом же судне в специальных камерах. Вслед за этим были осуществлены удачные рейсы с мясом из Австралии в Англию, в частности на пароходе «Стратлевен», оборудованном воздушной холодильной машиной. К 1930 г. мировой морской рефрижераторный флот состоял уже из 1100 судов общей грузовместимостью 1,5 млн. условных тонн.

Пожарные Насосы

Применяются в качестве установок, обеспечивающих пожаробезопасность на танкерах, перевозящих сжиженный природный газ, а также на танкерах, переоборудованных под хранилища в районах нефтепромыслов и под производственные мощности Производитель Ellehammer

Как правило, используются в качестве резервных систем, которые дублируют кольцевые системы пожаротушения, когда 3-4 аварийных пожарных насоса не дают упасть давлению воды в случае отказа основной системы.

Аварийные пожарные насосы комплектуются электрическими или дизельными двигателями. Ассортимент таких насосов весьма велик: от насосов с 4-цилиндоровым двигателем, развивающим мощность 120 л.с., которые перекачивают 70 м3 в час - до огромных агрегатов с 12-цилиндровым двигателем, емкостью 38 литров, развивающим мощность 1400 л.с., которые способны перекачивать более 2000 м3 в час под давлением 12 бар.

Пожарные насосы и их кингстоны должны располагаться на судне в отапливаемых

помещениях ниже ватерлинии, насосы должны иметь самостоятельные приводы и подача каждого стационарного насоса должна быть не менее 80 % полной подачи, поделенной на число насосов системы, но не менее 25 м3/ч. Насосы пожарной системы не должны использоваться для осушения отсеков, в которых хранились нефтепродукты или остатки других горючих жидкостей.

Стационарный пожарный насос можно использовать на судне и для других целей, если другой насос находится в постоянной готовности к немедленному действию по тушению пожара
Общая подача стационарных насосов должна быть увеличена, если они одновременно с пожарной системой обслуживают другие системы пожаротушения. При определении этой подачи необходимо учитывать давление в системах. Если давление в подключаемых системах выше, чем в пожарной системе, подачу насоса необходимо увеличивать из-за увеличения расхода через пожарные стволы при повышении давления.
Стационарный аварийный пожарный насос обеспечивается всем необходимым для работы (источниками энергии для его привода, приемными кингстонами) при выходе из строя основных насосов и подключается к системе судна. В случае необходимости он обеспечивается устройством для самовсасывания.

Аварийные насосы располагают в отдельных помещениях, а аварийные насосы с дизельным приводом обеспечиваются топливом на 18 ч работы. Подача аварийного насоса должна быть достаточной для работы двух стволов с наибольшим диаметром насадки, принятым для данного судна, и не менее 40% общей подачи насосов, но не менее 25 м3/ч.

Оценка: 3.4

Оценили: 5 человек

МЕТОДИЧЕСКИЙ ПЛАН

проведения занятий с группой дежурного караула 52 пожарной части по Пожарной технике.
Тема: «Пожарные насосы». Вид занятия: классно-групповой. Отводимое время: 90 минут.
Цель занятия: закрепление и совершенствование знаний личного по теме: «Пожарные насосы».
1.Литература, используемая при проведении занятия:
Учебник: «Пожарная техника» В.В.Теребнёв. Книга №1.
Приказ №630.

Определение и классификация насосов.

Насосы – это машины, преобразующие подводящую энергию в механическую энергию перекачиваемой жидкости или газа. В пожарной технике применяют насосы различного вида (рис. 4.6.) Наибольшее применение находят механические насосы, в которых механическая энергия твердого тела, жидкости или газа преобразуется в механическую энергию жидкости.

По принципу действия насосы классифицируют в зависимости от природы преобладающих сил, под действием которых происходит перемещение перекачиваемой среды в насосе.

Таких сил бывает три:
массовая сила (инерция), жидкостное трение (вязкость) и сила поверхностного давления.

Насосы, в которых преобладает действие массовых сил и жидкостное трение (или то и другое), объединены в группу динамических насосов, в которых преобладают силы поверхностного давления, составляют группу объемных насосов. Требования к насосным установкам пожарных автомобилей.

Насосы пожарных автомобилей работают от двигателей внутреннего сгорания – это одна из основных технических особенностей, которую необходимо учитывать при разработке и эксплуатации насосов. К насосным установкам предъявляются следующие основные требования.

Насосы пожарных автомобилей должны работать от открытых водоисточников, поэтому при контрольной высоте всасывания не должно наблюдаться явлений кавитации. В нашей стране контрольная высота всасывания составляет 3...3,5 м, в странах Западной Европы – 1,5.

Напорная характеристика Q – Н для пожарных насосов должна быть пологой, иначе при перекрывании кранов на стволах (уменьшение подачи) резко возрастет напор на насосе и в рукавных линиях, что может привести к разрыву рукавов. При пологой напорной характеристике легче управлять насосом при помощи рукоятки “газ” и изменять при необходимости параметры насоса.

По энергетическим параметрам насосы пожарных автомобилей должны соответствовать параметрам двигателя, от которого они работают, иначе не будут полностью реализованы технические возможности насосов или двигатель будет работать в режиме низкого значения КПД и большого удельного расхода топлива.

Насосные установки некоторых пожарных автомобилей (например, аэродромных) должны работать на ходу при подаче воды из лафетных стволов. Вакуумные системы насосов пожарных автомобилей должны обеспечивать забор воды за контрольное время (40...50 с) с максимально возможной глубины всасывания (7...7,5 м).

Стационарные пеносмесители на насосах пожарных автомобилей должны в установленных пределах производить дозировку подачи пенообразователя при работе пенных стволов.

Насосные установки пожарных автомобилей должны без снижения параметров работать длительное время при подаче воды в условиях низких и высоких температур.

Насосы должны иметь по возможности малые габариты и массу для рационального использования грузоподъемности пожарного автомобиля и его кузова.

Управление насосной установкой должно быть удобным, простым и при возможности автоматизированным, с низким уровнем шума и вибрации при работе. Одно из важных требований, обеспечивающих успешное тушение пожара, - надежность насосной установки.

Основные конструктивные элементы центробежных насосов – это рабочие органы, корпус, опоры вала, уплотнение.

Рабочие органы – это рабочие колеса, подводы и отводы.

Рабочее колесо насоса нормального давления выполнено из двух дисков – ведущего и покрывающего.
Между дисками расположены лопасти, загнутые в сторону, противоположную направлению вращения колеса. До 1983 года лопасти рабочих колес имели двоякую кривизну, что обеспечивало минимальные гидравлические потери и высокие кавитационные свойства.

Однако из-за того, что изготовление таких колес трудоемко и они имеют значительную шероховатость, в современных пожарных насосах применяют рабочие колеса с цилиндрической формой лопаток (ПН-40УБ, ПН-110Б, 160.01.35, ПНК-40/3). Угол установки лопастей на выходе рабочего колеса увеличен до 65...70?, лопасти в плане имеют S – образную форму.

Это позволило увеличить напор насоса на 25...30% и подачу на 25% при сохранении кавитационных качеств и КПД примерно на том же уровне.

Масса насосов уменьшена на 10%.

При работе насосов на рабочее колесо действует гидродинамическая осевая сила, которая направлена по оси в сторону всасывающего патрубка и стремится сместить колесо по оси, поэтому важным элементом в насосе является крепление рабочего колеса.

Осевая сила возникает за счет разности давлений на рабочее колесо, так как со стороны всасывающего патрубка на него действует меньшая сила давления, чем справа.

Величину осевой силы приближенно определяют по формуле
F = 0,6 Р? (R21 – R2в),
где F – осевая сила, Н;
Р – давление на насосе, Н/м2 (Па);
R1 – радиус входного отверстия, м;
Rв – радиус вала, м.

Для уменьшения осевых сил, действующих на рабочее колесо, в ведущем диске высверлены отверстия, через которые жидкость перетекает из правой части в левую. При этом величина утечек равняется утечкам через целевое уплотнение за колесом, КПД насоса снижается.

С износом элементов целевых уплотнений будет увеличиваться утечка жидкости и уменьшаться КПД насоса.

В двух- и многоступенчатых насосах рабочие колеса на одном валу могут размещаться с противоположным направлением входа – это также компенсирует или снижает действие осевых сил.

Кроме осевых сил на рабочее колесо при эксплуатации насоса действуют радиальные силы. Эпюра радиальных сил, действующих на рабочее колесо насоса с одним отводом, показана на рис. 4.21. Из рисунка видно, что на рабочее колесо и вал насоса при вращении действует неравномерно распределенная нагрузка.

В современных пожарных насосах разгрузка вала и рабочего колеса от действия радиальных сил осуществляется путем изменения конструкций отводов.

Отводы в большинстве пожарных насосов спирального типа. В насосе 160.01.35 (марка условная) применен отвод лопаточного типа (направляющий аппарат), за которым расположена кольцевая камера. В этом случае действие радиальных сил на рабочее колесо и вал насоса сводится до минимума. Спиральные отводы в пожарных насосах выполняют одно- (ПН-40УА, ПН-60) и двухзавитковыми (ПН-110, МП-1600).

В пожарных насосах с однозавитковым отводом разгрузку от радиальных сил не производят, ее воспринимают вал и подшипники насоса. В двухзавитковых отводах действие радиальных сил в спиральных отводах уменьшается и компенсируется.

Подводы в пожарных центробежных насосах, как правило, осевые, выполненные в виде цилиндрической трубы. В насосе 160.01.35 предусмотрен предвключенный шнек. Это способствует улучшению кавитационных свойств насоса.

Корпус насоса является базовой деталью, изготовляют его, как правило, из алюминиевых сплавов.

Форма и конструкция корпуса зависят от конструктивных особенностей насоса.

Опоры вала применяют для пожарных насосов встроенного типа. Валы в большинстве случаев устанавливают на двух подшипниках качения.

Конструкция центробежных насосов. В нашей стране на пожарных автомобилях устанавливают в основном насосы нормального давления типа ПН-40, 60 и 110, параметры которых регламентированы ОСТ 22-929-76. Кроме этих насосов для аэродромных автомобилей тяжелого типа на шасси МАЗ-543,

МАЗ-7310 используют насосы 160.01.35 (по номеру чертежа).

Из комбинированных насосов на пожарных автомобилях используют насос марки ПНК 40/3.

В настоящее время разработан и готовится к выпуску насос высокого давления ПНВ 20/300.

Пожарный насос ПН-40УА.

Унифицированный пожарный насос ПН-40УА выпускался серийно с начала 80-х годов вместо насоса ПН-40У и хорошо зарекомендовал себя на практике.

Модернизированный насос ПН-40УА в отличие от ПН-40У выполнен со съемной масляной ванной, расположенной в задней части насоса. Это намного облегчает ремонт насоса и технологию изготовления корпуса (корпус разделен на две части).
Кроме того, в насосе ПН-40УА применен новый способ крепления рабочего колеса на двух шпонках (вместо одной), что увеличило надежность этого соединения.

Насос ПН-40УА

является унифицированным для большинства пожарных автомобилей и приспособлен для заднего и среднего расположения на шасси автомобилей ГАЗ, ЗИЛ, Урал.

Насос ПН-40УА Насос состоит из корпуса насоса, напорного коллектора, пеносмесителя (марка ПС-5) и двух задвижек. корпуса 6, крышки 2, вала 8, рабочего колеса 5, подшипников 7, 9, уплотнительного стакана 13, червячного привода тахометра 10, манжеты 12, муфты фланца 11, винта 14, пластичной набивки 15, шланга 16.

Рабочее колесо 5 закреплено на валу при помощи двух шпонок 1, стопорной шайбы 4 и гайки 3.

Крепление крышки к корпусу насоса осуществлено шпильками и гайками, для обеспечения герметизации соединения установлено резиновое кольцо.

Щелевые уплотнения (переднее и заднее) между рабочим колесом и корпусом насоса выполнены в виде уплотнительных колец из бронзы (Бр ОЦС 6-6-3) на рабочем колесе (напрессовка) и чугунных колец в корпусе насоса.

Уплотнительные кольца в корпусе насоса закреплены винтами.

Уплотнение вала насоса достигается применением пластичной набивки или каркасных резиновых сальников, которые размещены в специальном уплотнительном стакане. Стакан прикреплен к корпусу насоса болтами через резиновую прокладку.

Болты через специальные отверстия зафиксированы проволокой во избежание их раскручивания.

При использовании в уплотнении вала пластичной набивки ПЛ-2 существует возможность восстановления герметизации узла без Это осуществляется путем прессования набивки винтом.

При использовании для уплотнения вала насоса каркасных сальников АСК-45 и их замене необходимо помнить, что из четырех сальников один (первый к рабочему колесу) работает на разрежение и три – на давление. Для распределения смазки в сальниковом стакане предусмотрено маслораспределительное кольцо, которое соединено каналами со шлангом и пресс-масленкой.

Водосборное кольцо стакана соединено каналом с дренажным отверстием, обильная утечка воды из которого указывает на износ сальников.

Полость в корпусе насоса между уплотнительным стаканом и сальником муфты фланца служит масляной ванной для смазки подшипников и привода тахометра.

Вместимость масляной ванны 0,5л Масло заливают через специальное отверстие, закрываемое пробкой. Сливное отверстие с пробкой находится в нижней части корпуса масляной ванны.

Воду из насоса сливают путем открытия крана, расположенного в нижней части корпуса насоса. Для удобства открывания и закрывания крана его рукоятка удлиняется рычагом. На диффузоре корпуса насоса расположен коллектор (алюминиевый сплав АЛ-9), к которому прикреплены пеносмеситель и две задвижки.

Внутри коллектора смонтирована напорная задвижка для подачи воды в цистерну (рис. 4.26.). В корпусе коллектора предусмотрены отверстия для подсоединения вакуумного клапана, трубопровода к змеевику системы дополнительного охлаждения двигателя и отверстие с резьбой для установки манометра.

Напорные задвижки прикреплены шпильками к напорному коллектору. Клапан 1 отлит из серого чугуна (СЧ 15-32) и имеет проушину для стальной (СтЗ) оси 2, концы которой установлены в пазы корпуса 3 из алюминиевого сплава АЛ-9. К клапану винтами и стальным диском прикреплена резиновая прокладка. Клапан закрывает проходное отверстие под действием собственной массы.

Шпиндель 4 прижимает клапан к седлу или ограничивает его ход, если он открывается напором воды из пожарного насоса.

Пожарный насос ПН-60

центробежный нормального давления, одноступенчатый, консольный. Без направляющего аппарата.

Насос ПН-60 является геометрически подобной моделью насоса ПН-40У, поэтому конструктивно не отличается от него.

Корпус насоса 4, крышка насоса и рабочее колесо 5 отлиты из чугуна. Отвод жидкости от колеса происходит по спиральной однозавитковой камере 3, заканчивающейся диффузором 6.

Рабочее колесо 5 с наружным диаметром 360 мм насажено на вал диаметром 38 мм по месту посадки. Крепление колеса осуществляется при помощи диаметрально расположенных двух шпонок, шайбы и гайки.

Уплотнение вала насоса осуществляется каркасными сальниками типа АСК-50 (50 – диаметр вала в мм). Сальники размещены в специальном стакане. Смазка сальников производится через масленку.

Для работы от открытого водоисточника на всасывающий патрубок насоса навинчивается водосборник с двумя патрубками для всасывающих рукавов диаметром 125 мм.

Сливной краник насоса расположен в нижней части насоса и направлен вертикально вниз (в насосе ПН-40УА сбоку).

Пожарный насос ПН-110

центробежный нормального давления, одноступенчатый, консольный, без направляющего аппарата с двумя спиральными отводами и напорными задвижками на них.

Основные рабочие органы насоса ПН-110 также геометрически подобны насосу ПН-40У.

В насосе ПН-110 имеются лишь некоторые конструктивные отличия, которые рассмотрены ниже.

Корпус 3 насоса, крышка 2, рабочее колесо 4, всасывающий патрубок 1 изготовлены из чугуна (СЧ 24-44).

Диаметр рабочего колеса насоса 630 мм, диаметр вала в месте установки сальников 80 мм (сальники АСК-80). Сливной краник находится в нижней части насоса и направлен вертикально вниз.

Диаметр всасывающего патрубка 200 мм, напорных патрубков – 100 мм.

Напорные задвижки насоса ПН-110 имеют конструктивные отличия (рис. 4.29).

В корпусе 7 размещен клапан с резиновой прокладкой 4. В крышке корпуса 8 установлен шпиндель с резьбой 2 в нижней части и маховичком

9. Уплотнение шпинделя осуществляется сальниковой набивкой 1, которая уплотняется накидной гайкой.

При вращении шпинделя гайка 3 поступательно перемещается по шпинделю. К цапфам гайки прикреплены две планки 6, которые соединены с осью клапана 5 задвижки, поэтому при вращении маховичка происходит открытие или закрытие клапана.

Комбинированные пожарные насосы.

К комбинированным пожарным насосам относятся такие, которые могут подавать воду под нормальным (напор до 100) и высоким давлением (напор до 300 м и более).

ВНИИПО МВД СССР в 80-е годы разработал и изготовил опытно-экспериментальную серию самовсасывающих комбинированных насосов ПНК-40/2 (рис. 4.30.). Всасывание воды и подача ее под высоким напором осуществляется вихревой ступенью, а под нормальным давлением – рабочим колесом центробежного типа. Вихревое колесо и рабочее колесо нормальной ступени насоса ПНК-40/2 размещены на одном валу и в одном корпусе.

Прилукским ОКБ пожарных машин разработан комбинированный пожарный насос ПНК-40/3, опытная партия которых находится на контрольной эксплуатации в гарнизонах пожарной охраны.

Насос ПНК-40/3

состоит из насоса нормального давления 1, который по конструкции и размерам соответствует насосу ПН-40УА; редуктора 2, повышающего обороты (мультипликатора), насоса (ступени) высокого давления

3. Насос высокого давления имеет рабочее колесо открытого типа. Вода от напорного коллектора насоса нормального давления по специальному трубопроводу подается во всасывающую полость насоса высокого давления и к напорным патрубкам нормального давления. От напорного патрубка насоса высокого давления вода подается по шлангам к специальным напорным стволам для получения тонкораспыленной струи.

Техническая характеристика насоса ПНК-40/3

Насос нормального давления:
подача, л/с..............................................................................40
напор, м.................................................................................100
частота вращения вала насоса, об/мин..............................2700
КПД...............................................................................................0,58
кавитационный запас.................................................................. 3
потребляемая мощность (при номинальном режиме), кВТ....67,7
Насос высокого давления (при последовательной работе насосов):
подача, л/с............................................................................11,52
напор, м................................................................................. 325
частота вращения, об/мин.................................................. 6120
КПД общий........................................................................... 0,15
потребляемая мощность, кВТ............................................ 67,7

Совместная работа насосов нормального и высокого давления:
подача, л/с, насоса:
нормального давления........................................................ 15
высокого давления.............................................................. 1,6
напор, м:
насоса нормального давления.......................................... 95
общий для двух насосов.................................................... 325
КПД общий.................................................................................. 0,27
Габариты, мм:
длина................................................................................... 600
ширина................................................................................ 350
высота................................................................................. 650
Масса, кг...................................................................................... 140

Основы эксплуатации центробежных насосов

Эксплуатацию и техническое обслуживание насосов пожарных автомобилей выполняют в соответствии с “Наставлением по эксплуатации пожарной техники”, инструкциями заводов-изготовителей на пожарные автомобили, паспортами на пожарные насосы и другими нормативными документами.

При получении пожарных автомобилей необходимо проверить сохранность пломб на насосном отсеке.

Перед постановкой в боевой расчет необходимо произвести обкатку насосов при работе на открытых водоисточниках.

Геометрическая высота всасывания при обкатке насосов не должна превышать 1,5 м. Всасывающая линия должна быть проложена на два рукава со всасывающей сеткой. От насоса должны быть проложена две напорные рукавные линии диаметром 66 мм, каждая на один рукав длиной 20 м. Вода подается через стволы РС-70 с диаметром насадков 19 мм.

При обкатке напор на насосе необходимо поддерживать не более 50 м. Обкатка насоса осуществляется в течение 10 ч. При обкатке насосов и их установке на пожарные водоемы не допускается направлять стволы и струи воды в водоем.

В противном случае в воде образуются мелкие пузырьки, которые через сетку и всасывающую линию попадают в насос и тем самым способствуют возникновению кавитации. Кроме того, параметры насоса (напор и подача) даже без кавитации будут ниже, чем в обычных условиях работы.

Обкатку насосов после капитального ремонта осуществляют также в течение 10 ч и в том же режиме, после текущего ремонта – в течение 5 ч.

Во время обкатки необходимо следить за показаниями приборов (тахометра, манометра, вакуумметра) и за температурой корпуса насоса в месте установки подшипников и сальников.

Через каждый 1 ч работы насоса необходимо на 2...3 оборота повернуть масленку для смазки сальников.

Перед обкаткой масленка должна быть заполнена специальной смазкой, а в пространство между передним и задним подшипниками залито трансмиссионное масло.

Целью обкатки является не только приработка деталей и элементов трансмиссии и пожарного насоса, но и проверка работоспособности насоса. Если при обкатке будут обнаружены мелкие неисправности, их следует устранить, после чего производить дальнейшую обкатку.

При обнаружении дефектов во время обкатки или в течение гарантийного срока эксплуатации необходимо составить акт-рекламацию и предъявить его заводу-поставщику пожарного автомобиля.

Если в трехдневный срок представитель завода не прибыл или известил телеграммой о невозможности прибытия, составляют односторонний акт-рекламацию с участием специалиста незаинтересованной стороны. Запрещается разбирать насос или другие узлы, в которых обнаружен дефект, до прибытия представителя завода или сообщения о получении акта-рекламации заводом.

Гарантийный срок для насосов пожарного автомобиля в соответствии с ОСТ 22-929-76 установлен 18 мес со дня получения. Ресурс работы насоса ПН-40УА до первого капитального ремонта по паспорту – 950 ч.

Обкатка насосов должна заканчиваться их испытанием на напор и подачу при номинальной частоте вращения вала насоса. Испытание удобно выполнять на специальных стендах станции технической диагностики ПА в отрядах (частях) технической службы.

Если таких стендов в гарнизоне пожарной охраны нет, то испытание производят в пожарной части.

В соответствии с ОСТ 22-929-76 уменьшение напора насосов при номинальной подаче и частоте вращения рабочего колеса не должно быть более 5% номинального значения для новых насосов.

Результаты обкатки насоса и его испытаний записывают в формуляр пожарного автомобиля.

После обкатки и испытаний пожарного насоса следует провести техническое обслуживание № 1 насоса. Особое внимание необходимо уделить работам по замене масла в корпусе насоса и проверке крепления рабочего колеса.

Ежедневно при смене караула водитель должен проверить:
-чистоту, исправность и комплектность узлов и агрегатов насоса и его коммуникаций внешним осмотром, отсутствие посторонних предметов во всасывающем и напорных патрубках насоса;
-работу задвижек на напорном коллекторе и водопенных коммуникациях;
-наличие смазки в сальниковой масленке и масла в корпусе насоса;
- отсутствие воды в насосе;
- исправность контрольных приборов на насосе;
-подсветку в вакуумном кране, лампу в плафоне освещения насосного отсека;
- насос и водопенные коммуникации на “сухой вакуум”.

Для смазки сальников масленку заправляют смазками типа солидол-С или прессолидол-С, ЦИАТИ-201. Для смазки шариковых подшипников насоса в корпус заливают трансмиссионные масла общего назначения типа: ТАп-15 В, ТСп-14.

Уровень масла должен соответствовать риске на масляном щупе.

При проверке насоса на “сухой вакуум” необходимо закрыть все краны и задвижки на насосе, включить двигатель и создать разрежение в насосе при помощи вакуумной системы 73...36 кПа (0,73...0,76 кгс/см2).

Падение разрежения в насосе должно быть не более 13 кПа (0,13 кгс/см2) за 2,5 мин.

Если насос не выдерживает испытания на вакуум, необходимо произвести опрессовку насоса воздухом под давлением 200...300 кПа (2...3 кгс/см2) или водой под давлением 1200...1300 кПа (12...13 кгс/см2). Перед опрессовкой места соединений целесообразно смочить мыльным раствором.

Для измерения разрежения в насосе необходимо использовать приставной вакуумметр с соединительной головкой или резьбой для установки на всасывающий патрубок насоса или вакуумметр, установленный на насосе. В этом случае на всасывающий патрубок устанавливают заглушку.

При обслуживании насосов на пожаре или учении необходимо:
поставить машину на водоисточник так, чтобы всасывающая линия была по возможности на 1 рукав, изгиб рукава был плавно направлен вниз и начинался непосредственно за всасывающим патрубком насоса (рис. 4.32.);
для включения насоса при работающем двигателе необходимо, выжав сцепление, включить коробку отбора мощности в кабине водителя, а затем выключить сцепление рукояткой в насосном отсеке;
*погрузить всасывающую сетку в воду на глубину не менее 600 мм, проследить, чтобы всасывающая сетка не касалась дна водоема;
*проверить перед забором воды закрытие всех задвижек и кранов на насосе и водопенных коммуникациях;
*забрать воду из водоема включением вакуумной системы, для чего выполнить следующие работы:
-включить подсветку, повернуть на себя рукоятку вакуумного клапана;
-включить газоструйный вакуумный аппарат;
-увеличить частоту вращения рычагом “Газ”;
-при появлении воды в смотровом глазке вакуумного клапана закрыть его поворотом рукоятки;
-снизить рычагом “Газ” частоту вращения до холостого хода;
-плавно включить сцепление рычагом в насосном отсеке;
-выключить вакуумный аппарат;
-довести рычагом “Газ” напор на насосе (по манометру) до 30 м;
-плавно открыть напорные задвижки, рычагом “Газ” установить необходимое давление на насосе;
-следить за показаниями приборов и возможными неисправностями;
-при работе от пожарных водоемов особое внимание уделить контролю за уровнем воды в водоеме и положению всасывающей сетки;
-через каждый час работы насоса смазать сальники поворотом крышки масленки на 2...3 оборота;
-после подачи пены с использованием пеносмесителя промыть насос и коммуникации водой от цистерны или водоисточника;
-заправлять водой цистерну после пожара от используемого водоисточника рекомендуется только в том случае, если есть уверенность, что вода не имеет примесей;
-после работы слить воду из насоса, закрыть задвижки, установить заглушки на патрубки.

При использовании насосов зимой необходимо предусмотреть меры против замерзания воды в насосе и в напорных пожарных рукавах:
- при температуре ниже 0?С включить систему отопления насосного отсека и выключить дополнительную систему охлаждения двигателя;
-при кратковременном прекращении подачи воды не выключать привод насоса, держать малые обороты на насосе;
-при работе насоса закрыть дверцу насосного отсека и следить за контрольными приборами через окно;
-для предотвращения замерзания воды в рукавах не перекрывать полностью стволы;
-разбирать рукавные линии от ствола к насосу, не прекращая подачу воды (в малом количестве);
-при длительной остановке насоса слить из него воду;
-перед использованием насоса зимой после длительной стоянки провернуть заводной рукояткой вал двигателя и трансмиссию на насос, убедившись в том, что рабочее колесо не примерзло;
-замерзшую в насосе, в соединениях рукавных линий воду отогревать горячей водой, паром (от специальной техники) или выхлопными газами от двигателя.

Техническое обслуживание № 1 (ТО-1) по пожарному автомобилю производят через 1000 км общего пробега (с учетом приведенного), но не реже одного раза в месяц.

По пожарному насосу перед ТО-1 проводят ежедневное обслуживание. ТО-1 включает:
- проверку крепления насоса к раме;
-проверку резьбовых соединений;
-проверку исправности (при необходимости разборку, смазку и мелкий ремонт или замену) кранов, задвижек, контрольных приборов;
- неполную разборку насоса (снятие крышки), проверку крепления рабочего колеса, шпоночного соединения, устранение засорения проточных каналов рабочего колеса;
-замену масла и заправку сальниковой масленки;
-проверку насоса на “сухой вакуум”;
-испытание насоса на забор и подачу воды из открытого водоисточника.

Техническое обслуживание № 2 (ТО-2) по пожарному автомобилю производят через каждые 5000 км общего пробега, но не реже одного раза в год.

ТО-2, как правило, выполняют в отрядах (частях) технической службы на специальных постах. Перед проведением ТО-2 автомобиль, включая насосную установку, диагностируют на специальных стендах.

ТО-2 включает выполнение тех же операций, что ТО-1, и, кроме того предусматривает проверку:
-правильности показаний контрольных приборов или их аттестацию в специальных учреждениях;
-напора и подачи насоса при номинальной частоте вращения вала насоса на специальном стенде станции технической диагностик или по упрощенной методике с установкой на открытый водоисточник и с использованием контрольных приборов насоса.

Подачу насоса измеряют по стволам-водомерам или оценивают приближенно по диаметру насадков на стволах и напору на насосе.

Падение напора насоса должно быть не более 15% номинального значения при номинальной подаче и частоте вращения вала;
-герметичности насоса и водопенных коммуникаций на специальном стенде с последующим устранением неисправностей.

Похожие статьи