Искусственные легкие. Подключение к аппарату искусственной вентиляции легких - показания и проведение

10.04.2020

Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам. Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа.

Надо сказать, что человеческое легкое представляет собой сложный механизм. Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа - пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений. Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

Комментирует Лаура Никласон: "Нам удалось разработать и изготовить пригодное для пересадки крысам легкое, эффективно переносящее кислород и углекислый газ и оксигенирующее гемоглобин в крови. Это один из первых шагов на пути к воссозданию целого легкого у более крупных животных и в конечном итоге у человека".

Ученые удалили из легких взрослой крысы клеточные компоненты, оставив ветвистые структуры легочных путей и кровеносные сосуды, которые послужили каркасом для новых легких. А вырастить клетки легкого им помог новый биореактор, имитирующий процесс развития легких у эмбриона. В итоге выращенные клетки были пересажаны на подготовленный каркас. Данные клетки заполнили внеклеточный матрикс - структуру ткани, обеспечивающую механическую поддержку и перенос веществ. Пересаженные крысам на 45-120 минут, эти искусственные легкие поглощали кислород и выводили углекислый газ, как настоящие.

А вот исследователям из Гарвардского университета удалось сымитировать работу легкого в автономном режиме в миниатюрном устройстве на основе микрочипа. Они отмечают: способность данного легкого поглощать наночастицы в воздухе и имитировать воспалительную реакцию на патогенных микробов представляет собой принципиальное доказательство того, что органы на микрочипах могут в будущем заменить лабораторных животных.

Собственно, ученые создали устройство стенки альвеолы, легочного пузырька, через который осуществляется газообмен с капиллярами. Для этого они высадили на синтетическую мембрану с одной стороны клетки эпителия из альвеол человеческого легкого, а с другой - клетки легочных сосудов. К клеткам легкого в устройстве подается воздух, к "сосудам" - жидкость, имитирующая кровь, а периодическое растяжение и сжатие передает процесс дыхания.

Дабы проверить реакцию новых легких на воздействия, ученые заставили его "вдохнуть" бактерии Escherichia coli вместе с воздухом, которые попали на "легочную" сторону. А одновременно с этим со стороны "сосудов" исследователи пустили в поток жидкости белые кровяные клетки. Клетки легкого обнаружили присутствие бактерии и запустили иммунный ответ: лейкоциты перешли через мембрану на другую сторону и уничтожили чужеродные организмы.

Помимо этого, ученые добавили в воздух, "вдыхаемый" аппаратом, наночастицы, включая типичные загрязнители воздуха. Некоторые виды этих частиц попали в легочные клетки и вызвали воспаление, а многие свободно прошли в "кровоток". При этом исследователи обнаружили, что механическое давление при дыхании существенно усиливает поглощение наночастиц.

Лёгкие человека - это парный орган, располагающийся в грудной клетке. Их основная функция – дыхание. Правое лёгкое имеет больший объём по сравнению с левым. Это обусловлено тем, что сердце человека, находясь посредине грудной клетки, имеет смещение в левую сторону. Объём лёгких составляет в среднем около 3 литров , а у профессиональных спортсменов более 8 . Размерами одно лёгкое женщины примерно соответствует сплюснутой с одной стороны трёхлитровой банке, при массе 350 г . У мужчин эти параметры на 10-15% больше.

Формирование и развитие

Формирование лёгких начинается на 16-18 день эмбрионального развития из внутренней части зародышевого лепестка – энтобласта. С этого момента и примерно до второго триместра беременности происходит развитие бронхиального дерева. Уже с середины второго триместра начинается формирование и развитие альвеол. К моменту рождения структура лёгких младенца полностью идентичны этому органу взрослого человека. Только следует заметить, что до первого вдоха в лёгких новорожденного нет воздуха. И ощущения при первом вдохе для младенца сродни ощущениям взрослого человека, который попытается вдохнуть воду.

Увеличение количества альвеол, продолжается до 20-22 лет. Особенно сильно это происходит в первые полтора–два года жизни. А после 50 лет, начинается процесс инволюции, вызванный возрастными изменениями. Уменьшается ёмкость лёгких, их размер. После 70 лет, ухудшается диффузия кислорода в альвеолах.

Строение

Левое лёгкое состоит из двух долей – верхней и нижней. У правого, кроме вышеперечисленных, есть ещё и средняя доля. Каждая из них делится на сегменты, а те, в свою очередь, на лабулы. Скелет лёгких состоит из древовидно разветвляющихся бронхов. Каждый бронх входит в тело лёгкого вместе с артерией и веной. Но раз эти вены и артерии из малого круга кровообращения, то по артериям течёт кровь, насыщенная углекислым газом, а по венам - кровь, обогащённая кислородом. Оканчиваются бронхи бронхиолами в лабулах, образуя в каждой полторы дюжины альвеол. В них и происходит газообмен.

Суммарная площадь поверхности альвеол, на которой происходит процесс газообмена, непостоянна и меняется с каждой фазой вдоха-выдоха. На выдохе она составляет 35-40 кв.м., а на вдохе 100-115 кв.м.

Профилактика

Основным методом профилактики большинства заболеваний является отказ от курения и соблюдение правил техники безопасности при работе на вредных производствах. Как это ни удивительно, но отказ от курения понижает риск возникновения рака лёгкого на 93% . Регулярные физические упражнения, частое пребывание на свежем воздухе и здоровое питание дают шанс практически любому человеку избежать многих опасных заболеваний. Ведь многие из них не лечатся, и спасает их только пересадка лёгкого.

Трансплантация

Первую в мире операцию по пересадке лёгкого выполнил в 1948 г наш врач – Демихов. С тех пор количество подобных операций в мире превысило 50 тысяч. По сложности эта операция даже несколько сложнее, чем пересадка сердца. Дело в том, что лёгкие, кроме основной функции дыхания, несут ещё и дополнительную – выработка иммуноглобулина. А его задача уничтожать всё чужеродное. И для пересаженных лёгких таким чужеродным телом может оказаться весь организм реципиента. Поэтому после трансплантации пациент обязан пожизненно принимать препараты, подавляющие иммунитет. Сложность с сохранением донорских лёгких - ещё один усложняющий фактор. Отдельно от организма они «живут» не более 4 часов. Пересаживать можно как одно, так и два лёгких. Операционная бригада состоит из 35-40 врачей высшей квалификации. Почти 75% пересадок происходят всего при трёх заболеваниях:
ХОБЛ
Муковисцидоз
синдром Хэммена - Рича

Стоимость подобной операции на Западе составляет около 100 тыс. евро. Выживаемость пациентов находится на уровне 60%. В России подобные операции делают бесплатно, а выживает только каждый третий реципиент. Да и если во всём мире ежегодно делается более 3000 трансплантаций, то в России только 15-20. Достаточно сильное снижение цен на донорские органы в Европе и в США наблюдалось во время активной фазы войны в Югославии. Многие аналитики связывают это с бизнесом Хашима Тачи по продаже живых сербов на органы. Что кстати и подтвердила Карла Дель Понте.

Искусственные лёгкие – панацея или фантастика?

В 1952 году в Англии впервые в мире была проведена операция с использованием ЭКМО. ЭКМО - это не прибор и не устройство, а целый комплекс для насыщения крови пациента кислородом вне его тела и удаления из неё углекислого газа. Это крайне сложный процесс может в принципе служить неким подобием искусственного лёгкого. Только пациент оказывался прикованным к постели и зачастую находился в бессознательном состоянии. Но с использованием ЭКМО при сепсисе выживает почти 80%, а при серьёзной травме лёгких более 65% пациентов. Сами комплексы ЭКМО очень дороги, и например в Германии их всего 5, а стоимость процедуры составляет около 17 тыс. долларов.

В 2002 году в Японии было объявлено об испытании прибора, подобного ЭКМО, только размером с две пачки сигарет. Дальше испытаний дело не пошло. Через 8 лет американские учёные из Йельского института создали почти полноценное, искусственное лёгкое. Оно было сделано наполовину из синтетических материалов, а наполовину из живых клеток лёгочной ткани. Устройство было испытано на крысе, и при этом оно вырабатывало специфический иммуноглобулин в ответ на введение патологических бактерий.

А буквально через год, в 2011 году, уже в Канаде, учёные сконструировали и испытали устройство, принципиально отличающееся от вышеприведённых. Искусственное лёгкое, которое полностью имитировало человеческое. Сосуды из силикона толщиной до 10 микрон, аналогичная человеческому органу площадь газопроницаемой поверхности. Самое главное, это устройство, в отличии от других не нуждалось в чистом кислороде и способно было обогащать кровь кислородом из воздуха. А для работы ему не нужны сторонние источники энергии. Его можно имплантировать в грудную клетку. Испытания на людях планируют провести к 2020 году.

Но пока это всё только разработки и экспериментальные образцы. А в наличии в этом году учёными Питсбургского университета было анонсировано устройство PAAL. Это такой же комплекс ЭКМО, только размером с футбольный мяч. Для обогащения крови ему нужен чистый кислород, и использовать его можно только в амбулаторных условиях, но зато пациент остаётся мобильным. И на сегодняшний день, это самая лучшая альтернатива лёгким человека.

Тяжелые расстройства дыхания требуют экстренной помощи в виде принудительной вентиляции легких. Отказ ли самих легких или дыхательной мускулатуры - это безусловная необходимость подключения сложной аппаратуры для насыщения крови кислородом. Различные модели аппаратов искусственной вентиляции легких - неотъемлемое оснащение служб интенсивной терапии или реанимации, необходимое для поддержания жизни пациентов, у которых проявились острые расстройства дыхания.

В экстренных ситуациях такая аппаратура, ясное дело, важна и необходима. Однако как средство штатной и продолжительной терапии она, к сожалению, не лишена недостатков. Например:

  • необходимость постоянного пребывания в стационаре;
  • перманентный риск воспалительных осложнений, обусловленный применением насоса для подачи воздуха в легкие;
  • ограничения в качестве жизни и самостоятельности (неподвижность, невозможность нормального питания, речевые затруднения и т.д.).

Исключить все эти затруднения, одновременно улучшив процесс насыщения крови кислородом, позволяет инновационная система искусственного легкого iLA, реанимационное, терапевтическое и реабилитационное применение которой предлагают сегодня клиники Германии.

Нерискованное преодоление расстройства дыхания

Система iLA это принципиально иная разработка. Ее действие внепульмональное и полностью неинвазивное. Расстройства дыхания преодолеваются без принудительной вентиляции. Схему насыщения кровью кислородом характеризуют следующие перспективные новшества:

  • отсутствие воздушного насоса;
  • отсутствие инвазивных («внедренных») устройств в легких и дыхательных путях.

Пациенты, которым установлено искусственное легкое iLA, не привязаны к стационарному устройству и больничной койке, они могут нормально передвигаться, общаться с другими людьми, самостоятельно есть и пить.

Самое главное преимущество: нет необходимости вводить в искусственную кому пациента с искусственной поддержкой дыхания. Применение стандартных аппаратов искусственной вентиляции легких во многих случаях требует коматозного «отключения» пациента. Для чего? Чтобы облегчить физиологические последствия дыхательного угнетения легких. К сожалению, это факт: аппараты искусственной вентиляции угнетают легкие. Насос подает воздух внутрь под давлением. Ритм подачи воздуха воспроизводит ритмику вдохов. Но на естественном вдохе легкие расширяются, в результате чего давление в них понижается. А на искусственном входе (принудительная подача воздуха), давление, наоборот, возрастает. Это и есть фактор угнетения: легкие пребывают в стрессовом режиме, что обусловливает воспалительную реакцию, которая в особо тяжелых случаях может передаваться и другим органам - например, печени или почкам.

Вот почему в применении насосных устройств поддержки дыхания два фактора имеют первостепенное и равноценное значение: неотложность и осторожность.

Система iLA, расширяя круг преимуществ в искусственной поддержке дыхания, избавляет от сопутствующих опасностей.

Как работает аппарат насыщения крови кислородом

Название «искусственное легкое» имеет в данном случае особый смысл, поскольку система iLA действует полностью автономно и не является функциональным дополнением к собственным легким пациента. Фактически это первое в мире искусственное легкое в истинном значении слова (а не легочный насос). Вентилируются не легкие, а сама кровь. Применена мембранная система насыщения крови кислородом и очистки от углекислоты. Кстати, в клиниках Германии систему так и называют: мембранным вентилятором (iLA Membranventilator). Кровь подается в систему естественным порядком, силой сжатия сердечной мышцы (а не мембранным насосом, как в аппарате искусственного кровообращения). Газовый обмен осуществляется в мембранных слоях аппарата примерно так же, как в альвеолах легких. Система действительно работает как «третье легкое», разгружая больные органы дыхания пациента.

Аппарат мембранного обмена (само «искусственное легкое») компактен, его размеры 14 на 14 сантиметров. Пациент носит приборчик с собой. Кровь поступает в него через катетерный порт - специальное подключение к бедренной артерии. Чтобы подключить прибор, не требуется хирургической операции: порт вводят в артерию примерно как иглу шприца. Подключение делают в паховой зоне, особая конструкция порта не ограничивает подвижности и вообще не доставляет пациенту неудобств.

Систему можно применять без перерыва довольно продолжительный срок, до одного месяца.

Показания к применению iLA

В принципе, это любые расстройства дыхания, особенно хронические. В наибольшей мере преимущества искусственного легкого проявляются в следующих случаях:

  • хроническая обструктивная болезнь легких;
  • острый респираторный дистресс-синдром;
  • травмы органов дыхания;
  • так называемая фаза Weaning: отвыкание от аппарата искусственной вентиляции легких;
  • поддержка пациента перед трансплантацией легкого.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40 50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960 х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30 34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо очки, например, разработаны в научно внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все таки будут…»

100 великих чудес техники

Санкт-Петербургский Государственный Политехнический Университет

КУРСОВАЯ РАБОТА

Дисциплина: Материалы медицинского применения

Тема: Искусственное легкое

Санкт-Петербург

Перечень условных обозначений, терминов и сокращений 3

1. Введение. 4

2. Анатомия дыхательной системы человека.

2.1. Воздухоносные пути. 4

2.2. Легкие. 5

2.3. Легочная вентиляция. 5

2.4. Изменения объема легких. 6

3. Искусственная вентиляция легких. 6

3.1. Основные методы искусственной вентиляции легких. 7

3.2. Показания к применению искусственной вентиляции легких. 8

3.3. Контроль адекватности искусственной вентиляции легких.

3.4. Осложнения при искусственной вентиляции легких. 9

3.5. Количественные характеристики режимов искусственной вентиляции легких. 10

4. Аппарат искусственной вентиляции легких. 10

4.1. Принцип работы аппарата искусственной вентиляции легких. 10

4.2. Медико-технические требования к аппарату ИВЛ. 11

4.3. Схемы для подачи газовой смеси пациенту.

5. Аппарат искусственного кровообращения. 13

5.1. Мембранные оксигенаторы. 14

5.2. Показания к экстракорпоральной мембранной оксигенации. 17

5.3. Каннюляция для экстракорпоральной мембранной оксигенации. 17

6. Заключение. 18

Список использованной литературы.

Перечень условных обозначений, терминов и сокращений

ИВЛ – искусственная вентиляция легких.

АД – артериальное давление.

ПДКВ — положительное давление в конце выдоха.

АИК – аппарат искусственного кровообращения.

ЭКМО — экстракорпоральная мембранная оксигенация.

ВВЭКМО — веновенозная экстракорпоральная мембранная оксигенация.

ВАЭКМО – веноартериальная экстракорпоральная мембранная оксигенация.

Гиповолемия — уменьшение объёма циркулирующей крови.

Обычно под этим более конкретно подразумевается снижение объёма плазмы крови.

Гипоксемия — понижение содержания кислорода в крови в результате нарушения кровообращения, повышенной потребности тканей в кислороде, уменьшения газообмена в лёгких при их заболеваниях, уменьшения содержания гемоглобина в крови и др.

Гиперкапния — повышенное парциальное давление (и содержание) CO2 в артериальной крови (и в организме).

Интубация — введение в гортань через рот специальной трубки с целью устранения нарушения дыхания при ожогах, некоторых травмах, тяжёлых спазмах гортани, дифтерии гортани и её острых, быстро разрешающихся отёках, например аллергических.

Трахеостома — это искусственно сформированный свищ трахеи, выведенный в наружную область шеи, для дыхания, минуя носоглотку.

В трахеостому вставляется трахеостомическая канюля.

Пневмоторакс — состояние, характеризующееся скоплением воздуха или газа в полости плевры.

1. Введение.

Дыхательная система человека обеспечивает по-сту-п-ле-ние в ор-га-низм ки-сло-ро-да и уда-ле-ние уг-ле-ки-сло-го га-за. Транс-порт га-зов и дру-гих не-об-хо-ди-мых ор-га-низ-му ве-ществ осу-ще-ст-в-ля-ет-ся с по-мо-щью кро-ве-нос-ной сис-те-мы.

Функ-ция ды-ха-тель-ной сис-те-мы сво-дит-ся лишь к то-му, что-бы снаб-жать кровь дос-та-точ-ным ко-ли-че-ст-вом ки-сло-ро-да и уда-лять из нее уг-ле-кис-лый газ. Хи-ми-че-ское вос-ста-нов-ле-ние мо-ле-ку-ляр-но-го ки-сло-ро-да с об-ра-зо-ва-ни-ем во-ды слу-жит для мле-ко-пи-таю-щих ос-нов-ным ис-точ-ни-ком энер-гии. Без нее жизнь не мо-жет про-дол-жать-ся доль-ше не-сколь-ких се-кунд.

Вос-ста-нов-ле-нию ки-сло-ро-да со-пут-ст-ву-ет об-ра-зо-ва-ние CO2 .

Ки-сло-род, входящий в CO2 , не про-ис-хо-дит не-по-сред-ст-вен-но из мо-ле-ку-ляр-но-го ки-сло-рода. Ис-поль-зо-ва-ние O2 и об-ра-зо-ва-ние CO2 свя-за-ны ме-ж-ду со-бой про-ме-жу-точ-ны-ми ме-та-бо-ли-че-ски-ми ре-ак-ция-ми; тео-ре-ти-че-ски ка-ж-дая из них длят-ся некоторое вре-мя.

Об-мен O2 и CO2 ме-ж-ду ор-га-низ-мом и сре-дой на-зы-ва-ет-ся ды-ха-ни-ем. У выс-ших жи-вот-ных про-цесс ды-ха-ния осу-ще-ст-в-ля-ет-ся бла-го-да-ря ря-ду по-сле-до-ва-тель-ных про-цес-сов.

1. Об-мен га-зов ме-ж-ду сре-дой и лег-ки-ми, что обыч-но обо-зна-ча-ют как "ле-гоч-ную вен-ти-ля-цию".

Об-мен га-зов ме-ж-ду аль-ве-о-ла-ми лег-ких и кро-вью (ле-гоч-ное ды-ха-ние).

3. Об-мен га-зов ме-ж-ду кро-вью и тка-ня-ми. Га-зы пе-ре-хо-дят внут-ри тка-ни к мес-там по-треб-ле-ния (для O2) и от мест об-ра-зо-ва-ния (для CO2) (кле-точ-ное ды-ха-ние).

Вы-па-де-ние лю-бо-го из этих про-цес-сов при-во-дит к на-ру-ше-ни-ям ды-ха-ния и соз-да-ет опас-ность для жиз-ни человека.

2.

Ана-то-мия дыхательной системы человека.

Ды-ха-тель-ная сис-те-ма че-ло-ве-ка со-сто-ит из тка-ней и ор-га-нов, обес-пе-чи-ваю-щих ле-гоч-ную вен-ти-ля-цию и ле-гоч-ное ды-ха-ние. К воз-ду-хо-нос-ным пу-тям от-но-сят-ся: нос, по-лость но-са, но-со-глот-ка, гор-тань, тра-хея, брон-хи и брон-хио-лы.

Лег-кие со-сто-ят из брон-хи-ол и аль-ве-о-ляр-ных ме-шоч-ков, а так-же из ар-те-рий, ка-пил-ля-ров и вен ле-гоч-но-го кру-га кро-во-об-ра-ще-ния. К эле-мен-там ко-ст-но-мы-шеч-ной сис-те-мы, свя-зан-ным с ды-ха-ни-ем, от-но-сят-ся реб-ра, меж-ре-бер-ные мыш-цы, диа-фраг-ма и вспо-мо-га-тель-ные ды-ха-тель-ные мыш-цы.

Воз-ду-хо-нос-ные пу-ти.

Нос и по-лость но-са слу-жат про-во-дя-щи-ми ка-на-ла-ми для воз-ду-ха, в ко-то-рых он на-гре-ва-ет-ся, ув-лаж-ня-ет-ся и фильт-ру-ет-ся. По-лость но-са вы-стла-на бо-га-то вас-ку-ля-ри-зо-ван-ной сли-зи-стой обо-лоч-кой. Мно-го-чис-лен-ные же-ст-кие во-лос-ки, а так-же снаб-жен-ные рес-нич-ка-ми эпи-те-ли-аль-ные и бо-ка-ло-вид-ные клет-ки слу-жат для очи-ст-ки вды-хае-мо-го воз-ду-ха от твер-дых час-тиц.

В верх-ней час-ти по-лос-ти ле-жат обо-ня-тель-ные клет-ки.

Гор-тань ле-жит ме-ж-ду тра-хе-ей и кор-нем язы-ка. По-лость гор-та-ни раз-де-ле-на дву-мя склад-ка-ми сли-зи-стой обо-лоч-ки, не пол-но-стью схо-дя-щи-ми-ся по сред-ней ли-нии. Про-стран-ст-во ме-ж-ду эти-ми склад-ка-ми — го-ло-со-вая щель за-щи-ще-но пла-стин-кой во-лок-ни-сто-го хря-ща — над-гор-тан-ни-ком.

Тра-хея на-чи-на-ет-ся у ниж-не-го кон-ца гор-та-ни и спус-ка-ет-ся в груд-ную по-лость, где де-лит-ся на пра-вый и ле-вый брон-хи; стен-ка ее об-ра-зо-ва-на со-еди-ни-тель-ной тка-нью и хря-щом.

Час-ти, при-мы-каю-щие к пи-ще-во-ду, за-ме-ще-ны фиб-роз-ной связ-кой. Пра-вый бронх обыч-но ко-ро-че и ши-ре ле-во-го. Вой-дя в лег-кие, глав-ные брон-хи по-сте-пен-но де-лят-ся на все бо-лее мел-кие труб-ки (брон-хио-лы), са-мые мел-кие из ко-то-рых — ко-неч-ные брон-хио-лы яв-ля-ют-ся по-след-ним эле-мен-том воз-ду-хо-нос-ных пу-тей. От гор-та-ни до ко-неч-ных брон-хи-ол труб-ки вы-стла-ны мер-ца-тель-ным эпи-те-ли-ем.

2.2.

В це-лом лег-кие име-ют вид губ-ча-тых, по-рис-тых ко-ну-со-вид-ных об-ра-зо-ва-ний, ле-жа-щих в обе-их по-ло-ви-нах груд-ной по-лос-ти. Наи-мень-ший струк-тур-ный эле-мент лег-ко-го — доль-ка со-сто-ит из ко-неч-ной брон-хио-лы, ве-ду-щей в ле-гоч-ную брон-хио-лу и аль-ве-о-ляр-ный ме-шок. Стен-ки ле-гоч-ной брон-хио-лы и аль-ве-о-ляр-но-го меш-ка об-ра-зу-ют уг-луб-ле-ния — аль-ве-о-лы. Такая структура легких увеличивает их дыхательную поверхность, которая в 50-100 раз превышает поверхность тела.

Стен-ки аль-ве-ол со-сто-ят из од-но-го слоя эпи-те-ли-аль-ных кле-ток и ок-ру-же-ны ле-гоч-ны-ми ка-пил-ля-ра-ми. Внут-рен-няя по-верх-ность аль-ве-о-лы по-кры-та по-верх-но-ст-но-ак-тив-ным ве-ще-ст-вом сур-фак-тан-том. От-дель-ная аль-ве-о-ла, тес-но со-при-ка-саю-щая-ся с со-сед-ни-ми струк-ту-ра-ми, име-ет фор-му не-пра-виль-но-го мно-го-гран-ни-ка и при-бли-зи-тель-ные раз-ме-ры до 250 мкм.

При-ня-то счи-тать, что об-щая по-верх-ность аль-ве-ол, че-рез ко-то-рую осу-ще-ст-в-ля-ет-ся га-зо-об-мен, экс-по-нен-ци-аль-но за-ви-сит от ве-са те-ла. С воз-рас-том от-ме-ча-ет-ся умень-ше-ние пло-ща-ди по-верх-но-сти аль-ве-ол.

Ка-ж-дое лег-кое ок-ру-же-но меш-ком — плев-рой. На-руж-ный (па-рие-таль-ный) лис-ток плев-ры при-мы-ка-ет к внут-рен-ней по-верх-но-сти груд-ной стен-ки и диа-фраг-ме, внут-рен-ний (вис-це-раль-ный) по-кры-ва-ет лег-кое.

Щель ме-ж-ду ли-ст-ка-ми на-зы-ва-ет-ся плев-раль-ной по-ло-стью. При дви-же-нии груд-ной клет-ки внут-рен-ний лис-ток обыч-но лег-ко сколь-зит по на-руж-но-му. Дав-ле-ние в плев-раль-ной по-лос-ти все-гда мень-ше ат-мо-сфер-но-го (от-ри-ца-тель-ное).

Искусственные органы: человек умеет все

В ус-ло-ви-ях по-коя внут-ри-плев-раль-ное дав-ле-ние у че-ло-ве-ка в сред-нем на 4,5 торр ни-же ат-мо-сфер-но-го (-4,5 торр). Меж-плев-раль-ное про-стран-ст-во ме-ж-ду лег-ки-ми на-зы-ва-ет-ся сре-до-сте-ни-ем; в нем на-хо-дят-ся тра-хея, зоб-ная же-ле-за (ти-мус) и серд-це с боль-ши-ми со-су-да-ми, лим-фа-ти-че-ские уз-лы и пи-ще-вод.

Ле-гоч-ная ар-те-рия не-сет кровь от пра-во-го же-лу-доч-ка серд-ца, она де-лит-ся на пра-вую и ле-вую вет-ви, ко-то-рые на-прав-ля-ют-ся к лег-ким.

Эти ар-те-рии вет-вят-ся, сле-дуя за брон-ха-ми, снаб-жа-ют круп-ные струк-ту-ры лег-ко-го и об-ра-зу-ют ка-пил-ля-ры, оп-ле-таю-щие стен-ки аль-ве-ол. Воз-дух в аль-ве-о-ле от-де-лен от кро-ви в ка-пил-ля-ре стен-кой аль-ве-о-лы, стен-кой ка-пил-ля-ра и в не-ко-то-рых слу-ча-ях про-ме-жу-точ-ным сло-ем ме-ж-ду ни-ми.

Из ка-пил-ля-ров кровь по-сту-па-ет в мел-кие ве-ны, ко-то-рые в кон-це кон-цов со-еди-ня-ют-ся и об-ра-зу-ют ле-гоч-ные ве-ны, дос-тав-ляю-щие кровь в ле-вое пред-сер-дие.

Брон-хи-аль-ные ар-те-рии боль-шо-го кру-га то-же при-но-сят кровь к лег-ким, а имен-но снаб-жа-ют брон-хи и брон-хио-лы, лим-фа-ти-че-ские уз-лы, стен-ки кро-ве-нос-ных со-су-дов и плев-ру.

Боль-шая часть этой кро-ви от-те-ка-ет в брон-хи-аль-ные ве-ны, а от-ту-да — в не-пар-ную (спра-ва) и в по-лу-не-пар-ную (сле-ва). Очень не-боль-шое ко-ли-че-ст-во ар-те-ри-аль-ной брон-хи-аль-ной кро-ви по-сту-па-ет в ле-гоч-ные ве-ны.

10 искусственных органов для создания настоящего человека

Оркестрио́н (нем. Orchestrion) - название ряда музыкальных инструментов, принцип действия которых подобен орга́ну и гармонике.

Первоначально оркестрионом назывался переносной орган, сконструированный по замыслу Аббата Фоглера в 1790 году. Он содержал около 900 труб, 4 мануала по 63 клавиши в каждом из них и 39 педалей. «Революционность» оркестриона Фоглера заключалась в активном использовании комбинационных тонов, что позволило существенно уменьшить размеры лабиальных органных труб.

В 1791 году такое же название было дано инструменту, который создал Томас Антон Кунц в Праге. Этот инструмент был оснащён как органными трубами, так и струнами, подобными фортепианным. Оркестрион Кунца имел 2 мануала по 65 клавиш и 25 педалей, имел 21 регистр, 230 струн и 360 труб.

В начале XIX века под названием оркестрион (также оркестри́на ) появился ряд автоматических механических инструментов, приспособленных для имитации звучания оркестра.

Инструмент имел вид шкафа, внутри которого был помещён пружинный или пневматический механизм, который при вбрасывании монеты приводился в действие. Расположение струн или труб инструмента было подобрано таким образом, чтобы при работе механизма звучали определённые музыкальные произведения. Особую популярность инструмент приобрёл в 1920-е годы в Германии.

Позднее оркестрион был вытеснен проигрывателями граммофонных пластинок.

См. также

Примечания

Литература

  • Оркестрион // Музыкальные инструменты: энциклопедия. - М.: Дека-ВС, 2008. - С. 428-429. - 786 с.
  • Оркестрион // Большая российская энциклопедия. Том 24. - М., 2014. - С. 421.
  • Мирек А.М. Оркестрион Фоглера // Справочник к схеме гармоник. - М.: Альфред Мирек, 1992. - С. 4-5. - 60 с.
  • Оркестрион // Музыкальный энциклопедический словарь. - М.: Советская энциклопедия, 1990. - С. 401. - 672 с.
  • Оркестрион // Музыкальная энциклопедия. - М.: Советская энциклопедия, 1978. - Т. 4. - С. 98-99. - 976 с.
  • Herbert Jüttemann: Orchestrien aus dem Schwarzwald : Instrumente, Firmen und Fertigungsprogramme.

    Bergkirchen: 2004. ISBN 3-932275-84-5.

CC© wikiredia.ru

Эксперимент, проведенный в Университете Гранады стал первым в ходе которого искусственная кожа была создана с дермой на основе арагозо-фибринного биоматериала. До сих пор использовались другие биоматериалы вроде коллагена, фибрина, полигликолиевой кислоты, хитозана и т.д.

Была создана более стабильная кожа с функционалом похожим на функционал обычной человеческой кожи.

Искусственный кишечник

В 2006 году английские ученые оповестили мир о создании искусственного кишечника, способного в точности воспроизвести физические и химические реакции, происходящие в процессе пищеварения.

Орган сделан из специального пластика и металла, которые не разрушаются и не подвергаются коррозии.

Тогда была впервые в истории проведена работа, которая демонстрировала, как плюрипотентные стволовые клетки человека в чашке Петри могут быть собраны в ткань организма с трехмерной архитектурой и типом связей, свойственных естественно развившейся плоти.

Искусственная кишечная ткань может стать терапевтическим средством №1 для людей, страдающих некротическим энтероколитом, воспалением кишечника и синдромом короткого кишечника.

В ходе исследований группа ученых под руководством доктора Джеймса Уэллса использовала два типа плюрипотентных клеток: эмбриональные человеческие стволовые клетки и индуцированные, полученные путем перепрограммирования клеток человеческой кожи.

Эмбриональные клетки называют плюрипотентными, потому что они способны превращаться в любой из 200 различных типов клеток человеческого организма.

Индуцированные клетки подходят для «причесывания» генотипа конкретного донора, без риска дальнейшего отторжения и связанных с этим осложнений. Это новое изобретение науки, поэтому пока неясно, обладают ли индуцированные клетки взрослого организма тем же потенциалом, что и клетки зародыша.

Искусственная ткань кишечника была «выпущена» в двух видах, собранная из двух разных типов стволовых клеток.

Чтобы превратить отдельные клетки в ткань кишечника, потребовалось много времени и сил.

Ученые собирали ткань, используя химикаты, а также белки, которые называют факторами роста. В пробирке живое вещество росло так же, как и в развивающемся эмбрионе человека.

Искусственные органы

Сначала получается так называемая эндодерма, из которой вырастают пищевод, желудок, кишки и легкие, а также поджелудочная железа и печень. Но медики дали команду эндодерме развиться только лишь в первичные клетки кишечника. На их рост до ощутимых результатов потребовалось 28 дней. Ткань созрела и обрела абсорбционную и секреторную функциональность, свойственную здоровому пищеварительному тракту человека. В ней также появились и специфические стволовые клетки, с которыми теперь работать будет значительно легче.

Искусственная кровь

Доноров крови всегда не хватает – российские клиники обеспечены препаратами крови всего на 40 % от нормы.

Для проведения одной операции на сердце с использованием системы искусственного обращения требуется кровь 10 доноров. Есть вероятность, что проблему поможет решить искусственная кровь – ее, как конструктор, уже начали собирать ученые. Созданы синтетические плазма, эритроциты и тромбоциты. Еще немного, и мы сможем стать Терминаторами!

Плазма – один из основных компонентов крови, ее жидкая часть. «Пластиковая плазма», созданная в университете Шеффилда (Великобритания), может выполнять все функции настоящей и абсолютно безопасна для организма. В ее состав входят химические вещества, способные переносить кислород и питательные вещества. На сегодняшний день искусственная плазма предназначена для спасения жизни в экстремальных ситуациях, но в ближайшем будущем ее можно будет использовать повсеместно.

Что ж, впечатляет. Хотя и немного страшновато представить, что внутри тебя течет жидкий пластик, точнее, пластиковая плазма. Ведь чтобы стать кровью, ее еще нужно наполнить эритроцитами, лейкоцитами, тромбоцитами. Помочь британским коллегам с «кровавым конструктором» решили специалисты из Калифорнийского университета (США).

Они разработали полностью синтетические эритроциты из полимеров, способные переносить кислород и питательные вещества от легких к органам и тканям и обратно, то есть выполнять основную функцию настоящих красных кровяных клеток.

Кроме того, они могут доставлять к клеткам лекарственные препараты. Ученые уверены, что в ближайшие годы завершатся все клинические испытания искусственных эритроцитов, и их можно будет применять для переливания.

Правда, предварительно разбавив их в плазме – хоть в естественной, хоть в синтетической.

Не желая отставать от калифорнийских коллег, искусственные тромбоциты разработали ученые из университета Case Western Reserve штата Огайо. Если быть точным, то это не совсем тромбоциты, а их синтетические помощники, тоже состоящие из полимерного материала. Их главная задача – создать эффективную среду для склеивания тромбоцитов, что необходимо для остановки кровотечения.

Сейчас в клиниках для этого используют тромбоцитарную массу, но ее получение – дело кропотливое и довольно долгое. Нужно найти доноров, произвести строгий отбор тромбоцитов, которые к тому же хранятся не более 5 суток и подвержены бактериальным инфекциям.

Появление искусственных тромбоцитов снимает все эти проблемы. Так что изобретение станет хорошим помощником и позволит врачам не бояться кровотечений.

    Настоящая & искусственная кровь. Что лучше?

    Термин «искусственная кровь» немного неточен. Настоящая кровь выполняет большое количество задач. Искусственная кровь пока может выполнять только некоторые из них Если будет создана полноценная искусственная кровь, способная полностью заменить настоящую, это будет настоящий прорыв в медицине.

    Искусственная кровь выполняет две основные функции:

    1) увеличивает объем кровяных телец

    2) выполняет функции обогащения кислородом.

    В то время как вещество, увеличивающее объем кровяных телец, уже давно используется в больницах, кислородная терапия пока находится в стадии разработки и клинических исследований.

      3.Предполагаемые достоинства и недостатки Искусственной крови

    Искусственные кости

    Медики из Империал колледжа в Лондоне утверждают, что им удалось псевдо-костный материал, который наиболее похож по своему составу на настоящие кости и имеет минимальные шансы на отторжение.

    Новые искусственные костные материалы фактически состоят сразу из трех химических соединений, которые симулируют работу настоящих клеток костной ткани.

    Медики и специалисты по протезированию по всему миру сейчас ведут разработки новых материалов, которые могли бы послужить полноценной заменой костной ткани в организме человека.

    Впрочем, на сегодня ученые создали лишь подобные костям материалы, пересаживать которые вместо настоящих костей, пусть и сломанных, до сих пор не доводилось.

    Основная проблема таких псевдо-костных материалов заключается в том, что организм их не распознает как «родные» костные ткани и не приживается к ним. В итоге, в организме пациента с пересаженными костями могут начаться масштабные процессы отторжения, что в худшем варианте может даже привести к масштабному сбою в иммунной системе и смерти пациента.

    Искусственное легкое

    Американские ученые из Йельского университета под руководством Лауры Никласон совершили прорыв: им удалось создать искусственное легкое и пересадить его крысам.

    Также отдельно было создано легкое, работающее автономно и имитирующее работу настоящего органа

    Надо сказать, что человеческое легкое представляет собой сложный механизм.

    Площадь поверхности одного легкого у взрослого человека составляет около 70 квадратных метров, собранных так, чтобы обеспечивать эффективный перенос кислорода и углекислого газа между кровью и воздухом. Но ткань легкого трудно восстанавливать, поэтому на данный момент единственный способ заменить поврежденные участки органа — пересадка. Данная процедура весьма рискованна в виду высокого процента отторжений.

    Согласно статистике, через десять лет после трансплантации в живых остаются лишь 10-20% пациентов.

    «Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны.

    Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

    Сменить руку? Не вопрос!..

    Искусственные руки

    Искусственные руки в XIX в.

    разделялись на «рабочие руки» и «руки косметические», или предметы роскоши.

    Для каменщика или чернорабочего ограничивались наложением на предплечье или плечо бандажа из кожаной гильзы с арматурой, к которой прикреплялся соответствующий профессии рабочего инструмент - клещи, кольцо, крючок и т.

    Косметические искусственные руки, смотря по занятиям, образу жизни, степени образования и другим условиям, бывали более или менее сложны.

    Искусственная рука могла иметь форму естественной, в изящной лайковой перчатке, способная производить тонкие работы; писать и даже тасовать карты (как известная рука генерала Давыдова).

    Если ампутация не достигла локтевого сустава, то при помощи искусственной руки возможно было возвратить функцию верхней конечности; но если ампутировано верхнее плечо, то работа рукой была возможна лишь через посредство объемистых, весьма сложных и требующих большого усилия аппаратов.

    Помимо последних, искусственные верхние конечности состояли из двух кожаных или металлических гильз для верхнего плеча и предплечья, которые над локтевым суставом были подвижно соединены в шарнирах посредством металлических шин. Кисть былa сделана из легкого дерева и неподвижно прикреплена к предплечью или же подвижна.

    В суставах каждого пальца находились пружины; от концов пальцев идут кишечные струны, которые соединялись позади кистевого сустава и продолжались в виде двух более крепких шнурков, причем один, пройдя по валикам через локтевой сустав, прикреплялся на верхнем плече к пружине, другой же, также двигаясь на блоке, свободно оканчивался ушком.

    При произвольном сгибании локтевого сустава пальцы смыкались в этом аппарате и совершенно закрывались, если плечо согнуто под прямым углом.

    Для заказов искусственных рук достаточно было указать меры длины и объема культи, а равно и здоровой руки, и объяснить технику цели, которым они должны служить.

    Протезы для рук должны обладать всеми нужными свойствами, к примеру, функцией закрытия и открытия кисти, удержания и выпускание из рук любой вещи, и у протеза должен быть вид, который как можно точнее копирует утраченную конечность.

    Существуют активные и пассивные протезы рук.

    Пассивные только копируют внешний вид руки, а активные, которые делятся на биоэлектрические и механические, выполняют гораздо больше функций. Механическая кисть довольно точно копирует настоящую руку, так что любой человек с ампутацией сможет расслабиться среди людей, а также сможет брать предмет и выпускать его.

    Бандаж, который крепится на плечевом поясе, приводит кисть в движение.

    Биоэлектрический протез работает благодаря электродам, считывающим ток, который вырабатывается мускулами во время сокращения, сигнал передаётся на микропроцессор и протез движется.

    Искусственные ноги

    Для человека с физическим повреждением нижних конечностей, конечно же, важны качественные протезы для ног.

    Именно от уровня ампутации конечности и будет зависеть правильный выбор протеза, который заменит и сможет даже восстановить множество функций, которые были свойственны конечности.

    Существуют протезы для людей, как молодых, так и пожилых, а также для детей, спортсменов, и тех, кто, несмотря на ампутацию, ведёт такую же активную жизнь. Протез высокого класса состоит из системы стоп, коленных шарниров, адаптеров, сделанных из материала высокого класса и повышенной прочности.

    Страницы:← предыдущая1234следующая →

Похожие статьи