Уширение импульса в оптическом волокне. Хроматическая дисперсия ов, причины ее появления

14.02.2020

В настоящее время одномодовое волокно занимает господствующее положение в технике волоконно-оптической связи. Это связано с тем, что в отличии от многомодового волокна, в одномодовом волокне поддерживается поперечная пространственная когерентность света и отсутствует межмодовая дисперсия. Хроматическая дисперсия ограничивает скорость и дальность передачи информации по одномодовому волокну с использованием одного спектрального канала.

Хроматическая дисперсия это уширение длительности светового импульса при распространении по волокну, связанное с различием групповых скоростей распространения спектральных составляющих импульса. Источником света в высокоскоростных ВОСП обычно являются полупроводниковые лазеры с достаточно узкой, но конечной шириной спектра излучения.

В одномодовом волокне хроматическая дисперсия возникает вследствие взаимодействия двух явлений – материальной и волноводной дисперсии. Материальная дисперсия возникает из-за нелинейной зависимости показателя преломления кварца от длины волны и соответствующей групповой скорости, в то время как причина волноводной дисперсии является зависимость от длины волны отношения к групповой скорости к диаметру сердцевины и отличие показателя преломления сердцевины и оболочки. Третья составляющая дисперсии, так называемая поляризационная модовая дисперсия (PMD) второго порядка, или дисперсия дифференциальная групповой задержки, определяется поляризационными характеристиками волокна и оказывает влияние, сходное с влиянием хроматической дисперсии. PMD второго порядка устанавливают крайний предел, до которого может быть компенсирована хроматическая дисперсия.

Разброс групповых скоростей, т.е. величина уширения за счет хроматической дисперсии τ хр в линейном приближении прямо пропорционально длине волокна L и ширине спектра Δλ светового импульса.

τхр=Dλ·L·Δλ , (10.3.9)

где D λ – коэффициент хроматической дисперсии (chromatic dispersion coefficient). Это малое изменение задержки светового импульса на участке волокна единичной длины (1 км) при единичном изменении длины волны (1 нм) несущей этого импульса. Единица измерения – пс/(нм·км). Его величина определяется как производная от спектральной зависимости групповой задержки τ д (λ):

Скорость передачи информации волоконно-оптической системы по одному каналу связи максимальна в случае, если групповая задержка не зависит от длины волны, т.е. D λ =0. Длина волны λ 0 , соответствующая этому условию, называется длиной волны нулевой дисперсии . При этой длине волны коэффициент хроматической дисперсии принимает нулевое значение. Единица измерения - нм.


В близи точки нулевой дисперсии зависимость коэффициента хроматической дисперсии от длины волны можно аппроксимировать линейной зависимостью:

, (10.3.11)

где S 0 – наклон спектральной зависимости коэффициента хроматической дисперсии (zero-dispersion siope) на длине волны нулевой дисперсии, измеряемый в пс/(нм 2 ·км).

· фазовый метод измерения (Phase shift technique);

· интерферометрический метод (Interferometric technique);

· импульсный метод измерения (Pulse delay technique).

Наиболее распространенным методом измерения дисперсии является фазовый метод и его разновидность, дифференциальный фазовый метод. Эти методы дают наибольшую точность измерений и удобство реализации[Д3].

Сущность фазового метода состоит в сравнении фазы прошедшего через измеряемый световод сигнала с фазой опорного сигнала. Полученные значения сдвига фаз φ(γ)связаны с групповыми задержками формулой:

τ(λ)=φ/(2πf) (10.3.12)

где f – частота модуляции сигнала. Измерения задержки должны быть проведены на нескольких длинах волн. Реализовать измерения можно несколькими способами:

· использовать несколько источников излучения с фиксированными длинами волн и широкополосный фотоприемник;

· использовать источник с перестраиваемой длиной волны (перестраиваемый лазер или широкополосный источник с селектором длин волн) и широкополосный фотоприемник;

· использовать широкополосный источники фотоприемник с селектором длин волн.

В случае использования измерителя хроматической дисперсии с перестраиваемой рабочей длиной волны необходимо установить границы спектрального диапазона и шаг изменения длины волны. Структурная схема фазового метода измерения хроматической дисперсии с использованием широкополосного источника излучения и фотоприемника с селектором длин волн представлена на рисунке 10.19.

Сигнал с задающего генератора модулирует мощность излучения источника. Модулированное световое излучение, прошедшее по тестируемому волокну, используется в качестве измеряемого сигнала, подаваемого на фазометр. Тот же сигнал с опорного генератора, подаваемый на фазометр по другому каналу, служит опорным сигналом. Фазометр измеряет сдвиг фаз между опорным и измеряемым сигналом. Измерения повторяются на каждой из выбранных длин волн. Из полученных значений относительного сдвига фаз по формуле (10.3.12) рассчитывается величина относительной задержки для всех длин волн, на которых проводились измерения. Обработка результатов измерения заключается в подборе функциональной зависимости τ(γ), значения которой на измеряемых длинах волн наиболее близки к измеренным значениям.

Международные стандарты рекомендуют для каждого типа волокна и спектрального диапазона измерений выбирать функциональные зависимости в виде некоторых многочленов, представляющих собой степенные функции длины волны γ с неизвестными коэффициентами. В процессе математической обработки измерений вычисляются значения этих коэффициентов. Широко используются, например, трех- или пятичленные функции Солмейера. Развитием фазового метода является дифференциальный фазовый метод (Differential Phase Shift method), когда измеряются относительные фазовые сдвиги и относительные задержки τ 1 и τ 2 двух сигналов на соседних близкорасположенных длинах волн λ 1 и λ 10.

Значение величины дисперсии на длине волны λ 1/2 , равной полусумме длин волн λ 1 и λ 2 , определяется линейной аппроксимацией по формуле:

. (10.3.13)

Интерференционный метод является альтернативным и реализуется по структурной схеме, использующей интерферометр Маха–Цандера и представленный на рисунке 10.20.

Излучение от широкополосного источника после селектора длин волн попадает в интерферометр Маха–Цандера. При линейном перемещении конца волокна, входящего в состав опорного плеча интерферометра, в опорный канал вносится известная разность оптических длин, значение которой позволяет вычислить групповую задержку светового сигнала в тестируемом волокне, расположенном в измерительном плече интерферометра. Интерферометрический метод применяется при измерении характеристик коротких отрезков волокна длиной несколько метров и в основном используется для контроля производственного процесса при изготовлении волокон и компонентов систем передачи.

Импульсный метод измерения хроматической дисперсии. Стандарт ITUT G650 регламентирует также метод, основанный на прямом измерении задержки световых импульсов с различными длинами волн при прохождении через волокно заданной длины (time offlight). В этом методе можно проводить измерения времени задержки оптических импульсов лазеров при прохождении заданного участка волокна «туда и обратно», т.е. при отражении от удаленного конца волокна. Точность измерения CD в этом методе ниже, чем точность измерения фазовым методом из-за меньшей точности измерения временных задержек. Схема установки для проведения измерений при этом остается почти такой же, как и при измерении фазовым методом. Вместо фазометра при измерении импульсным методом необходимо использовать другое устройство, позволяющее измерять относительную временную задержку двух импульсов.

Поскольку точность импульсного метода обратно пропорционально длительности используемых импульсов, то необходимо, чтобы их длительность была не более 400 пс.

Аппаратура для измерения хроматической дисперсии. Поскольку измерения хроматической дисперсии производятся не только на смонтированных линиях для точной компенсации, но и при производстве и разработке компонентов систем передачи, ОВ и ОК, а также для научных исследований, то на рынке существуют устройства различных категорий, предназначенные для измерения значений CD. Их технические параметры варьируются в очень широком диапазоне. Однако сравнение такого большого количества приборов выходит за рамки настоящей статьи, поэтому мы ограничимся здесь лишь измерителями CD, предназначенными для контроля ВОЛС.В настоящее время на рынке представлены приборы ведущих производителей измерительной техники, таких, как Acterna, Anritsu,EXFO, Luciol, NETTEST, Perkin Elmer и белорусского предприятия ИИТ (Институт информационных технологий). Сравнительные характеристики приборов представлены в таблице приложения 7. Приборы, представленные в таблице, условно можно разделить на полевые и стационарные. К категории полевых были отнесены сравнительно небольшие устройства, имеющие автономное питание наряду с питанием от сети. Измерение хроматической дисперсии на основе прямого измерения задержки распространения коротких световых импульсов разных фиксированных длин волн (импульсный метод измерений) представлено в приборе ν-CD1 швейцарской компании Luciol. Постоянство длины волны источников излучения обеспечивается решетками Брэгга, играющими роль узкополосного (0,1 нм) оптического фильтра излучателя. Количество источников может быть произвольным. Погрешность временных измерений составляет 5 пс. Для достижения высокой чувствительности (до 42 дБ) в приборе применяется техника счета фотонов с регистрацией сигналов на уровне 100 дБм. Единственным отечественным производителем измерителей хроматической дисперсии является компания ИИТ (Институт информационных технологий, Беларусь). В приборах этой компании ИД21 (для кабельных заводов и испытательных лабораторий) и ИД22 (для измерения проложенных линий) применяется фазовый метод с 7 источниками излучения для измерения разности фаз синусоидально модулированного сигнала на фиксированных длинах волн. При этом реализовано техническое решение с использованием лавинного фотодиода в качестве смесителя высокочастотных сигналов, что дает возможность применить низкочастотный оптический приемник для регистрации сигнала разности фаз опорного и сигнального каналов и существенно увеличить отношение сигнал/шум. Последующая цифровая обработка сигнала с помощью преобразования Фурье позволяет минимизировать искажения сигналов в приемной части устройства. Приборы ИД21и ИД22 обладают высокими техническими характеристиками (большой динамический диапазон, высокая скорость измерений, батарейное питание, малый вес) и выгодно отличаются низкой стоимостью по сравнению с зарубежными аналогами.

К типичным представителям полевых приборов для измерения CD следует отнести оптические рефлектометры Anritsu (MW9076D1) иActerna (MTS5000e), а также универсальные измерительные платформы CMA5000 компании Nettest и FTB400 с модулем FTB5800компании EXFO. Особый интерес для операторов связи представляют полевые приборы, построенные на модульной основе, так называемые портативные модульные измерительные платформы. Принцип построения таких платформ основан на использовании портативного индустриального компьютера и сменных блоков, выполняющих широкий спектр измерений, таких, как рефлектометрия, измерение вносимых потерь и потерь на обратное отражение, спектральных измерений в системах WDM, измерение ПМД и CD и т.д. Идеология построения полевых приборов на модульной основе впервые была представлена компанией EXFO в 1996 году (FTB300); в настоящее время наблюдается устойчивая тенденция построения приборов на этом принципе. Приборы компаний Anritsu (MW9076D1),Acterna (MTS5000 c модулем 5083 CD) и Nettest (CMA5000 OTDR/CD) позволяют произвести оценку хроматической дисперсии с использованием излучения лазеров на 4 фиксированных длинах волн: 1310, 1450, 1550 и1625 нм, при этом используется метод измерения временных интервалов прохождения световых импульсов через волокно. Несомненным достоинством этих приборов является малый вес, высокая скорость измерений и дополнительная возможность измерения рефлектограмм. К недостаткам следует отнести несколько меньшую точность измерения дисперсии, связанную не только с применением всего 4 фиксированных источников излучения, но и с меньшей точностью определения временных задержек импульсным методом по сравнению с фазовым, особенно в участках волокна небольшой длины(несколько км).Портативная модульная измерительная система компании Nettest CMA5000, представленная осенью 2002 года, может включать в себя также и модуль измерения хроматической дисперсии, характеристики которого приведены в таблице. Принцип измерения построен на методе измерения сдвига фаз при перестройке длины волны излучающего лазера. В полевом приборе компании EXFO также применяется метод измерения фазового сдвига сигнала, причем в качестве опорной длины волны используется выделенная фильтром компонента широкополосного излучения светодиода. Такое решение обеспечивает процесс измерения с использование модного волокна, без обратной связи с источником излучения для спектральной привязки результатов измерения. В результате появляется возможность измерения длинных участков волокна с однонаправленными элементами, такими, как изоляторы и усилители (до30 усилителей). В частности, сообщалось об успешном измерении 500километровой линии связи с восемью усилителями EDFA. Заметим, что в настоящее время несколько компаний предлагают приборы, выполненные на модульном принципе, что позволяет проводить комбинированные измерения CD и ПМД на основе одной платформы в полевых условиях (см. таблицу). В такой комплектации можно проводить весь комплекс измерений дисперсионных параметров ВОЛС в полевых условиях на базе одного переносного устройства. В заключение можно сделать вывод, что в современных телекоммуникационных системах измерение и компенсация хроматической дисперсии становятся все более насущной задачей. Большой выбор приборов на рынке измерительной техники позволяет успешно решать эту, казалось бы, не простую задачу. Следует отметить, что все основные производители измерительного оборудования, перечисленные выше, представлены в России либо напрямую, либо через российские компании, осуществляющие продажи в рамках дистрибьюторских соглашений.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии. Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны. (2-18) Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны (2-19) где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l 0 . Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l 0 для данного конкретного волокна. Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки. Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, ): t (l) = A + Bl 2 + Cl -2 . Коэффициенты A, B, C являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую t (l), рис. 2.10. Тогда удельная хроматическая дисперсия вычисляется по формуле: (2-20) где l 0 = (C/B) 1/4 - длина волны нулевой дисперсии (zero dispersion wavelength), новый параметр S 0 = 8B - наклон нулевой дисперсии (zero dispersion slope, его размерность пс/(нм 2 *км)), а l - рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

3.3 ОПТИЧЕСКОЕ ВОЛОКНО

Можно выделить четыре основные явления в оптическом волокне, ограничивающие характеристики систем WDM - это хроматическая дисперсия, поляризационная модовая дисперсия первого и второго порядка и нелинейные оптические эффекты.

3.3.1 Хроматическая дисперсия

Важной оптической характеристикой стекла, используемого при изготовления волокна, является дисперсия показателя преломления, проявляющаяся в зависимости скорости распространения сигнала от длины волны - материальная дисперсия. Кроме этого, при производстве одномодового волокна, когда кварцевая нить вытягивается из стеклянной заготовки, в той или иной степени возникают отклонения в геометрии волокна и в радиальном профиле показателя преломления. Сама геометрия волокна вместе с отклонениями от идеального профиля также вносит существенный вклад в зависимость скорости распространения сигнала от длины волны, это - волноводная дисперсия.

Совместное влияние материальной и волноводной дисперсий называют хроматической дисперсией волокна, рис. 3.16.

Рис.3.16 Зависимость хроматической дисперсии от длины волны

Явление хроматической дисперсии ослабевает по мере уменьшения спектральной ширины излучения лазера. Даже если бы можно было использовать идеальный источник монохроматического излучения с нулевую шириной линии генерации, то после модуляции информационным сигналом произошло бы спектральное уширение сигнал, и тем больше уширение, чем больше скорость модуляции. Есть и другие факторы, приводящие к спектральному уширению излучения, из которых можно выделить чирпирование источника излучения.

Таким образом, исходный канал представлен не единственной длиной волны, а группой длин волн в узком спектральном диапазоне - волновым пакетом. Так как различные длины волн распространяются с разными скоростями (или точнее, с разными групповыми скоростями), то оптический импульс, имеющий на входе линии связи строго прямоугольную форму, по мере прохождения по волокну будет становиться все шире и шире. При большом времени распространения в волокне этот импульс может смешаться с соседними импульсами, затрудняя точное их восстановление. С увеличением скорости передачи и длины линии связи влияние хроматической дисперсии возрастает.

Хроматическая дисперсия, как уже говорилось, зависит от материальной и волноводной составляющих. При некоторой длине волны λ o хроматическая дисперсия обращается в ноль - эту длину волны называют длиной волны нулевой дисперсии.

Одномодовое кварцевое волокно со ступенчатым профилем показателя преломления обладает нулевой дисперсией на длине волны 1310 нм. Такое волокно часто называют волокном с несмещенной дисперсией.

Волноводная дисперсия в первую очередь определяется профилем показателя преломления сердцевины волокна и внутренней оболочки. В волокне со сложным профилем показателя преломления, изменяя соотношение между дисперсией среды и дисперсией волновода, можно не только сместить длину волны нулевой дисперсию, но и подобрать нужную форму дисперсионной характеристики, т.е. форму зависимости дисперсии от длины волны.

Форма дисперсионной характеристики является ключевой для систем WDM, в особенности, по волокну со смещенной дисперсией (Рек. ITU-T G.653).

Кроме параметра λ o используют параметр S o , описывающий наклон дисперсионной характеристики на длине волны λ o , рис. 3.17. В общем случае, наклон на других длинах волн отличается от наклона при длине волны λ o . Текущее значение наклона S o определяет линейную составляющую дисперсии в окрестности λ o .

Рис. 3.17 Основные параметры зависимости хроматической дисперсии от длины волны: λ o - длина волны нулевой дисперсии и S o - наклон дисперсионной характеристики в точке нулевой дисперсии

Хроматическую дисперсию τ chr (обычно измеряется в пс) можно рассчитать по формуле

τ chr = D(λ) · Δτ · L ,

где D(λ) - коэффициент хроматической дисперсии (пс/(нм*км)) , а L - протяженность линии связи (км). Заметим, что данная формула не точна в случае ультра узкополосных источников излучения.

На рис. 3.18 раздельно показаны зависимости волноводной дисперсии для волокна с несмещенной (1) и смещенной (2) дисперсией и материальной дисперсии от длины волны.

Рис. 3.18 Зависимость дисперсии от длины волны (хроматическая дисперсия определяется как сумма материальной и волноводной дисперсий.)

Хроматическая дисперсия системы передачи чувствительна к:
увеличению длины и числа участков линии связи;
увеличению скорости передачи (т.к. увеличивается эффективная ширина линии генерации источника).

На нее в меньшей степени влияют:
уменьшение частотного интервала между каналами;
увеличение числа каналов.

Хроматическая дисперсия уменьшается при:
уменьшении абсолютного значения хроматической дисперсии волокна;
компенсации дисперсии.

В системах WDM с обычным стандартным волокном (Рек. ITU-T G.652) хроматической дисперсии следует уделять особое внимание, так как она велика в области длины волны 1550 нм.

Информация по ОВ передается в виде коротких оптических импульсов. Энергия импульса распределяется между всеми направляемыми модами. Скорости всех мод вдоль их траектории в ступенчатом ОВ одинаковы. Однако время, которое им понадобится для прохождения 1 км ОВ, будет различным. На выходе ОВ импульсы отдельных мод, пришедшие в разное время, складываются, образуя более широкий, по сравнению с входным, оптический импульс (рис. 2.1).

Рис. 2.1. Траектории меридиональных лучей в ОВ со ступенчатым профилем показателя преломления.

Явление уширения импульса в многомодовом ОВ называется межмодовой дисперсией, которая характеризуется величиной D m , измеряющейся в нс/км. Если величина дисперсии известна, то уширение импульса Δt в ОВ длиной L в первом приближении определится выражением:

Верхняя оценка величины межмодовой дисперсии: наименьшую траекторию и наименьшее время распространения t min имеет луч, распространяющийся вдоль оси ОВ.

Наибольшую траекторию и наибольшее время распространения t max имеет луч, распространяющийся по ОВ, отражаясь от границы раздела сердцевины и оболочки под углом полного внутреннего отражения.

Тогда . (2.4)

Дисперсия ограничивает скорость передачи информации по ОВ.

Рис. 2.2. Зависимость межмодовой дисперсии от относительной разности показателей преломления сердцевины и оболочки.

С величиной межмодовой дисперсии [нс/км] связано понятие широкополосности волокна или удельной полосы пропускания B[МГц км]

Величина широкополосности для ступенчатых многомодовых кварцевых волокон ограничивается величиной 20-50 МГц км.

Для градиентных многомодовых волокон широкополосность лежит в пределах 200 – 2000 МГц км.

Радикальным способом уменьшения дисперсии является переход от многомодовой передачи к одномодовой.

Впервые одномодовый режим передачи в волокне со ступенчатым профилем показателя преломления был достигнут путем уменьшения радиуса сердцевины до 5 мкм. Такие волокна называют стандартными одномодовыми волокнами.

Важным нормируемым параметром у одномодовых волокон является диаметр w или радиус r n м модового пятна (поля), который характеризует потери при вводе света в волокно и используются для расчетов вместо радиуса или диаметра сердцевины, его величина зависит от типа волокна и рабочей длины волны и лежит в пределах 8..10 мкм (фактически он на 10-12% больше диаметра сердцевины).



Для одномодового ОВ распределение интенсивности поля моды можно аппроксимировать гауссовской кривой:

Рис. 2.3. Определение диаметра модового поля.

На рис. 2.4. показаны рассчитанные по выражениям распределения модового поля для стандартного волокна на длинах волн, которые обычно используются для связи.

Рис. 2.4. Распределение модового поля основной моды в стандартном волокне.

Поскольку скорость распространения света в ОВ зависит от длины волны излучения λ, разные спектральные составляющие сигнала распространяются с разной скоростью.

Рис. 2.5. Спектр излучения источника.

Хроматическая дисперсия состоит из двух составляющих: материальной и волноводной:

Как физическая величина измеряется в пс / (нм·км) и означает уширение импульса в волокне длиной 1 км при ширине спектра сигнала 1 нм (с учетом скорости передачи и ширины спектра источника излучения).

Материальная дисперсия обусловлена зависимостью показателя преломления кварца n (как фазового, так и группового) или скорости распространения света в кварце от длины волны (рис. 1.10) и пропорциональна второй производной показателя преломления по длине волны:



Рис. 2.6. Возникновение материальной дисперсии.

На рис. 2.7 показана зависимость материальной дисперсии от длины волны. Видно, что материальная дисперсия имеет знак и при длине волны нулевой материальной дисперсии λ = λ 0 mat проходит через 0.

Волноводная дисперсия D в не связана со свойствами материала, но зависит от конструкции и размеров волновода. Ее появление связано с тем, что волна в одномодовом ОВ распространяется частично в сердцевине, частично в оболочке и показатель преломления для нее принимает среднее значение между показателями преломления сердцевины и оболочки. При изменении длины волны глубина проникновения поля в кварцевую оболочку меняется и, следовательно, меняется среднее значение показателя преломления.

Рис. 2.7. Хроматическая дисперсия в стандартном одномодовом
волокне.

Рис. 2.8. Возникновение волноводной дисперсии.

Волноводная дисперсия отрицательна и с увеличением λ она уменьшается. Это позволяет, изменяя размеры и конструкцию ОВ, управлять зависимостью D в, а, следовательно, и зависимостью D хр от λ.

Существует такая длина волны, при которой материальная и волноводная дисперсии равны по модулю и имеют противоположные знаки, то есть хроматическая дисперсия равна нулю. Эту длину волны называют длиной волны нулевой хроматической дисперсии или просто длиной волны нулевой дисперсии λ 0 D .

В большинстве одномодовых ОВ расположение осей наибольшей и наименьшей скорости является случайным и расширение проходящего по ОВ импульса растет с увеличением длины L пропорционально корню квадратному из длины ОВ:

где D p – поляризационно-модовая дисперсия.

Для большинства одномодовых ОВ величина поляризационно-модовой дисперсии лежит в пределах 0.02 – 0.2 пс/км 0.5 .

Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом расширении импульсы начинают перекрываться, так что становится невозможным их выделение на приёме.

Дисперсия τ - это рассеяние во времени спектральных и модовых составляющих оптического сигнала, приводящее к расширению длительности импульса на приёме.

Дисперсия определяется как квадратичная разность длительности импульсов на выходе и входе кабеля:

τ(l) = , пс/км. (2.8)

Чем меньше значение дисперсии, тем больше ширина полосы пропускания ОВ, тем больший поток информации можно передать по ОВ.

Максимальная ширина полосы пропускания на 1 километр кабеля обратно пропорциональна дисперсии и приближённо равна:

F = 0, 44/ τ , Гц (2.9)

Дисперсию классифицируют по причинам происхождения следующим образом:

Рисунок 2.11 Виды дисперсии

Результирующая дисперсия определяется из формулы:


Материальная дисперсия обусловлена зависимостью показателя преломления оптического волокна от длины волны λ .

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны λ . Волноводная дисперсия возникает из-за ограничения света направляющей структурой (волокном). Тогда как почти вся энергия в многомодовом ОВ сконцентрирована в относительно большой сердцевине, в одномодовых ОВ свет распространяется и в сердцевине и в оболочке. Единственная направляемая мода может рассматриваться как распространяющаяся со скоростью, определяемой эффективным показателем преломления, большим чем показатель преломления оболочки, но меньшим показателя сердцевины. С ростом длины волны всё больше энергии распространяется в оболочке с малым показателем преломления. В результате получается расширение импульса, зависящее от структуры волокна, т. е.волноводная дисперсия.

    Поляризационно-модовая дисперсия (ПМД) - это дисперсия, вызываемая разностью в скоростях распространения двух основных ортогонально-поляризованных мод, существующих в одномодовом волокне.

Рисунок 2.12 Поляризационно-модовая дисперсия

Наличие ПМД приводит к тому, что результирующий выходной импульс света уширяется по сравнению с входным. Луч света от источника излучения попадает на вход ОВ. При этом возникает явление двойного лучепреломления . Это означает, что внутри ОВ образуется две волны (моды), которые поляризуется в двух ортогональных (взаимно-перпендикулярных) плоскостях и распространяется в виде двух мод одной волны. Из-за физической асимметрии показателя преломления ОВ эти моды одной волны движутся с разной скоростью.

ПМД также может быть возникать в местах соединения волокон или изгибах. ПМД влияет на работу ВОЛС так же, как и хроматическая дисперсия, но механизм уширения импульсов в этих случаях различен.

Существенным отличием ПМД от хроматической дисперсии является тот факт, что влияние хроматической дисперсии в линии можно компенсировать, в то время как методов компенсации влияния ПМД в настоящее время не существует. В прошлом (лет 15 назад) влияние ПМД не принималось во внимание, поскольку скорости передачи, а также расстояния между регенераторами в ВОЛС были относительно невелики. В настоящее время, когда скорости передачи достигают сотен Гбит/с, а расстояния между оптическими регенераторами в ВОЛС - сотен километров, ПМД становится ограничивающим фактором при разработке ВОЛС.

В многомодовых ступенчатых волокнах определяющей является межмодовая дисперсия , которая обусловлена наличием большого числа распространяющихся мод и различиями времен их распространения по волокну, обычно в многогодовом ОВ τ =20÷50 нс/км.

В градиентных ОВ происходит выравнивание времени распространения различных мод и определяющей является материальная дисперсия , τ =3÷5 нс/км.

В ступенчатых одномодовых ОВ проявляется хроматическая (волноводная и материальная) дисперсия , но они почти равны по абсолютной величине и противоположны по фазе в широком спектральном диапазоне (Рис.13) при λ = 1,2 ÷ 1,7 мкм. В одномодовых ОВ τ = 5 -17 пс/км.

Возникновение хроматической дисперсии в материале световода обусловлено тем, что оптический источник, возбуждающий вход ОВ (светоизлучающий диод – СИД или лазерный диод – ЛД), формирует световые импульсы, имеющие непрерывный волновой спектр определенной ширины (например, для СИД это примерно 35-60 нм, для многомодовых лазерных диодов (ММЛД) – 2-5 нм, для одномодовых ЛД (ОМЛД) – 0,01-1нм). Различные спектральные компоненты импульса распространяются с разными скоростями и приходят в определенную точку (к концу волокна) в разное время, приводя к уширению импульса на выходе.

В области от 800 нм до 1270 нм более длинные волны (более красные) движутся по ОВ быстрее по сравнению с более короткими (более голубыми) длинами волн (рисунок 2.13). Например, волны длиной 860 нм распространяются быстрее по стеклянному волокну, чем волны длиной 850 нм. Это связано с тем, что коэффициент преломления стекла в диапазоне от 800 нм до 1270 нм уменьшается с ростом длины волны, (этим же самым явлением объясняется возникновение радуги). Такая дисперсия называется положительной .

В области от 1270 нм до 1700 нм ситуация меняется: более короткие волны движутся быстрее по сравнению с более длинными; волна 1560 нм движется медленнее, чем волна 1540 нм, т.е. коэффициент преломления стекла в диапазоне от 1270 нм до 1700 нм увеличивается с ростом длины волны. Это явление называют аномальной (отрицательной) дисперсией. Отрицательная дисперсия выражается в том, что более «медленные» спектральные составляющие импульса ускоряются, а «быстрые», наоборот замедляются. В некоторой точке спектра происходит совпадение, при этом более голубые и более красные длины волн движутся с одной и той же скоростью. Это совпадение скоростей происходит на длине волны примерно 1270 нм, на этой длине волны материальная дисперсия равна нулю (См. рисунок 2.13 и таблицу 2.1).

Из рисунка 2.13 видно, что на определённой длине волны материальная и волноводная дисперсия противоположны по знаку и равны по величине, т. е. взаимно компенсируются. На этой длине волны хроматическая дисперсия, являющаяся суммой материальной и волноводной дисперсий, равна нулю. Для ОВ эта длина волны - порядка 1312 нм , её называют длиной волны нулевой дисперсии , Таким образом, для одномодового кварцевого волокна хроматическая дисперсия положительна для длин волн λ <1312 нм и отрицательна для длин волн λ >1312 нм, а в окрестности λ = 1312 нм она нулевая.

Таблица 2.1 – Типичные значения удельной материальной дисперсии одномодового ОВ

, мкм

М (), пс/нм*км

В (), пс/нм*км

Материальная и волноводная дисперсии ОВ пропорциональны ширине спектра излучения источника Δλ. Значения этих дисперсий можно определить через удельную дисперсию по формулам:

; (2.11)

(2.12)

где М(λ) – удельная материальная дисперсия, значения которой представлены в таблице 2.1, В(λ) –удельная волноводная дисперсия, значения которой представлены в таблице 2.1,Δλ – ширина спектральной линии источника излучения.Измеряется хроматическая дисперсия в единицах: пс/км.

Известно, что для кварцевых ОВ минимум затухания соответствует длине волны 1,55 мкм и дальность связи на этой длине волны ограничивается хроматической дисперсией. Как следует из рисунка 2.13, обычное одномодовое волокно не обеспечивает минимум дисперсии для λ=1,55 мкм, поэтому были разработаны ОВ со смещенной (Dispersion Shifted) дисперсией, которые отличаются конфигурацией профиля показателя преломления (треугольный профиль).

Рисунок 2.14 – Зависимость материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией

На рисунке 2.14 представлены зависимости материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией.

При изменении профиля преломления ОВ волноводная дисперсия увеличивается, и компенсация дисперсии осуществляется на другой длине волны – 1,55 мкм, благодаря чему можно оптимизировать ОВ для работы в третьем окне прозрачности, где затухание ОВ минимально.

В результате исследований волокон со смещенной дисперсией было показано, что наилучшие показатели обеспечивают волокна с треугольным профилем, так как они обладают самофокусирующими свойствами и удерживают распространяющиеся лучи в небольшом объеме, прилегающем к оси ОВ.

Хроматическая дисперсия выбрана международным союзом связистов (INU) в качестве критерия для классификации одномодовых оптических волокон. Согласно этому критерию, существует три типа одномодовых оптических волокон:

    Стандартное одномодовое волокно (тип G.652). Это наиболее ходовой тип волокна, используется в мире с 1988 года. Параметры (потери и дисперсия) этого волокна оптимизированы на длину волны 1310 нм (минимум хроматической дисперсии), оно может использоваться и в диапазоне длин волн 1525...1565 нм, где имеет место абсолютный минимум потерь в волокне.

    Одномодовое волокно со смещенной нулевой дисперсией (тип G.653). Называется так потому, что абсолютный минимум хроматической дисперсии путем выбора специальной формы профиля показателя преломления смещен в диапазон длин волн λ = 1550 нм абсолютного минимума потерь в волокне. Волокно G.653 оптимизировано для высокоскоростной передачи на одной длине волны и имеет ограниченные возможности для передачи на нескольких длинах волн.

    Одномодовое волокно со смещенной в область длин волн λ = 1550 нм ненулевой дисперсией (тип G.655). Волокно оптимизировано для высокоскоростной передачи информации на нескольких длинах волн в диапазоне около 1550 нм. Волокно G.655 разработано для волоконно-оптических систем со спектральным уплотнением каналов - DWDM-систем (при работе этих систем нулевая дисперсия может привести к возникновению нелинейных эффектов в ОВ).

Похожие статьи